Description Usage Arguments Details Value Author(s) References Examples
This generic function computes the inverse of the expected 'Fisher' information matrix,
I^-1/theta
(see
the definition of theta in section 2.3 of Nyangoma et al
., 2009). The
second diagonal element of this matrix is the variance of the mean difference
between cases and controls, having adjusted for the effect of confounders.
The elements of I
are sums of the proportions
of samples having given attributes, or sums of proportions of class memberships
of given conditional
contingency tables obtained from the cross
tabulated the attributes of the samples under study. Thus it
contains information on the heterogeneity in the
data due to imbalances in the proportions of samples having given
attributes.
1 | fisherInformation(Data, ...)
|
Data |
An object of |
... |
Some methods for this generic function may take additional, optional arguments. At present none do. |
Note that continuous variables must first be discretized, and the variable
names must coincide
with the column
names of PhenoInfo
extracted from the object
.
Currently this function only accepts a maximum of three binary variables.
The existing methods (e.g. Diggle et al. 1997, page 31)
for continuous repeated data
consider only a single exposure variable.
We
recommend that some form of variable selection be used to determine which covariates
to include
in the analysis.
This function returns a matrix: and its second diagonal element (divided by 2) is the
quantity called Z
(or the heterogeneity-correction factor)
in the sample size calculation function, sampleSize
.
Stephen Nyangoma
1. Nyangoma SO, Ferreira JA, Collins SI, Altman DG, Johnson PJ, and Billingham LJ (2009): Sample size calculations for planning clinical proteomic profiling studies using mass spectrometry. Bioinformatics (Submitted)
2. Diggle PJ, Heagerty P, Liang K.-Y and Zeger SL. (2002). Analysis of Longitudinal Data (second edition). Oxford: Oxford University Press
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | #########################################################################################
#The matrices of interest are of the form (see eq. 15, 18 and 22 Nyangoma et al. (2009))
#########################################################################################
#Examples are:
###################
# 1 binary variable
###################
data.frame(x1=c(1,'b'),x2=c('b','b'))
#####################
# 2 binary variables
#####################
data.frame(x1=c(1,'b','c'),x2=c('b','b','d'),x3=c('c','d','c'))
##########################################
# 3 binary variables
data.frame(x1=c(1,'b','c','d'),x2=c('b','b','e','f'),x3=c('c','e','c','g'),x4=c('d','f','g','d'))
##############################################################################
##############################################################################
# Data # pheno_urine
# the phenotypic information of the urine cancer patients and normal controls.
#####
# I have discretized protein concentration
# concentration<=70 and concentration>70
##########################################
##########################################
#data(pheno_urine)
#PhenoInfo <- pheno_urine
#variables <- c('Tumor','Sex','Protein_concIndex')
#variables=c('Tumor','Sex')
#variables=c('Tumor')
# Tumor must contain characters "c" and "n"
#Protein_concIndex <- pheno_urine[!(pheno_urine$stage == 'late'),]$Protein_conc
#Protein_concIndex[Protein_concIndex<=70] <- 0
#Protein_concIndex[Protein_concIndex>70] <- 1
#Protein_concIndex=as.factor(Protein_concIndex)
#PhenoInfo <- data.frame(pheno_urine[!(pheno_urine$stage == 'late'),],Protein_concIndex)
#FisherInformation(PhenoInfo,variables)
data(liverdata)
data(liver_pheno)
OBJECT=new("aclinicalProteomicsData")
OBJECT@rawSELDIdata=as.matrix(liverdata)
OBJECT@covariates=c("tumor" , "sex")
OBJECT@phenotypicData=as.matrix(liver_pheno)
OBJECT@variableClass=c('numeric','factor','factor')
OBJECT@no.peaks=53
inversefisherinformation <- fisherInformation(OBJECT)
inversefisherinformation
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.