Description Usage Arguments Details Value Author(s) References Examples
This generic function sampleSize
calculates the protein variance and the sample size required to estimate the clinically important differences (DIFF
).
The input data are the consensus parameters of peaks with medium biological variation.
1 | sampleSize(Data,intraclasscorr,signifcut, ...)
|
Data |
An object of |
intraclasscorr |
An object of |
signifcut |
An object of |
... |
Some methods for this generic function may take additional, optional arguments. At present none do. |
The sample sizes are computed for various combinations of the power with
values beta=c(0.90,0.80,0.70)
and the significance values, alpha = c(0.001, 0.01,0.05)
.
Note that here we use beta
for power rather
than the conventional 1-beta
.
protein_variance |
consensus protein variance |
replicate_correlation |
consensus intraclass correlation |
sample_size |
the sample size required |
Stephen Nyangoma
Nyangoma SO, Ferreira JA, Collins SI, Altman DG, Johnson PJ, and Billingham LJ: Sample size calculations for planning clinical proteomic profiling studies using mass spectrometry. Bioinformatics (Submitted)
Smyth GK, et al.: Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 2005, 21, 2067 - 75
Smyth GK: Linear models and emperical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3, 1, Article 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | ########################################################################
## SAMPLE SIZE
#######################################################################
#The function sampleSize calculates the biological variance, differences.
#These are the consensus values of peaks with median biological variation
# It also gives sample sizes for beta=c(0.90,0.80,0.70) and alpha = c(0.001, 0.01,0.05)
####################################################################
####################################################################
####################################################################
intraclasscorr <- 0.60 #cut-off for intraclass correlation
signifcut <- 0.05 #significance cut-off
data(liverdata)
data(liver_pheno)
OBJECT=new("aclinicalProteomicsData")
OBJECT@rawSELDIdata=as.matrix(liverdata)
OBJECT@covariates=c("tumor" , "sex")
OBJECT@phenotypicData=as.matrix(liver_pheno)
OBJECT@variableClass=c('numeric','factor','factor')
OBJECT@no.peaks=53
sampleSize(OBJECT,intraclasscorr,signifcut)
####################################################################
####################################################################
####################################################################
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.