Description Usage Arguments Details Value Examples
Plot heatmap showing top clusters or cluster-marker combinations
1 2 3 4 5 6 7 8 9 10 11 12 |
out |
Output object from |
analysis_type |
Whether to plot heatmap for differential abundance (DA) or differential state (DS) test results. |
top_n |
Number of top clusters (DA tests) or cluster-marker combinations (DS tests) to display. Default = 20. |
threshold |
Threshold for significant adjusted p-values. Default = 0.1. |
res |
Object containing differential test results. Alternatively, the combined
output object from the wrapper function |
d_se |
Data object. Alternatively, the combined output object from the wrapper
function |
d_counts |
Data object. Alternatively, the combined output object from the wrapper
function |
d_medians |
Data object. (Required for DS tests only.) Alternatively, the combined
output object from the wrapper function |
d_medians_by_cluster_marker |
Data object. Alternatively, the combined output
object from the wrapper function |
sample_order |
(Optional) Custom ordering for samples (columns) in right-hand panel of heatmap. (This is useful when the default ordering does not group samples by condition; e.g. samples are ordered alphabetically by sample IDs instead.) |
Display heatmap to visualize results for the top (most highly significant) detected clusters or cluster-marker combinations.
For DA tests, the heatmap consists of the following panels:
median (arcsinh-transformed) expression (across all samples) for 'cell type' markers
cluster abundances by sample
row annotation indicating significant detected clusters
For DS tests, the heatmap consists of:
median (arcsinh-transformed) expression (across all samples) for 'cell type' markers
median (arcsinh-transformed) expression (across all samples) for 'cell state' markers
median (arcsinh-transformed) expression (by sample) for 'cell state' markers for the top cluster-marker combinations
row annotation indicating significant detected cluster-marker combinations
Heatmaps are generated using the ComplexHeatmap
package (Gu et al., 2016), and
color scales are generated using the circlize
package (Gu et al., 2014). Both
packages are available from Bioconductor.
Displays a heatmap.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | # For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.
# Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
d
}
# Create random data (without differential signal)
set.seed(123)
d_input <- list(
sample1 = d_random(),
sample2 = d_random(),
sample3 = d_random(),
sample4 = d_random()
)
# Add differential abundance (DA) signal
ix_DA <- 801:900
ix_cols_type <- 1:10
d_input[[3]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)
d_input[[4]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)
# Add differential states (DS) signal
ix_DS <- 901:1000
ix_cols_DS <- 19:20
d_input[[1]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[2]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[3]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)
d_input[[4]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)
experiment_info <- data.frame(
sample_id = factor(paste0("sample", 1:4)),
group_id = factor(c("group1", "group1", "group2", "group2")),
stringsAsFactors = FALSE
)
marker_info <- data.frame(
channel_name = paste0("channel", sprintf("%03d", 1:20)),
marker_name = paste0("marker", sprintf("%02d", 1:20)),
marker_class = factor(c(rep("type", 10), rep("state", 10)),
levels = c("type", "state", "none")),
stringsAsFactors = FALSE
)
# Create design matrix
design <- createDesignMatrix(experiment_info, cols_design = "group_id")
# Create contrast matrix
contrast <- createContrast(c(0, 1))
# Test for differential abundance (DA) of clusters (using default method 'diffcyt-DA-edgeR')
out_DA <- diffcyt(d_input, experiment_info, marker_info,
design = design, contrast = contrast,
analysis_type = "DA", method_DA = "diffcyt-DA-edgeR",
seed_clustering = 123, verbose = FALSE)
# Test for differential states (DS) within clusters (using default method 'diffcyt-DS-limma')
out_DS <- diffcyt(d_input, experiment_info, marker_info,
design = design, contrast = contrast,
analysis_type = "DS", method_DS = "diffcyt-DS-limma",
seed_clustering = 123, verbose = FALSE)
# Display results for top DA clusters
topTable(out_DA, format_vals = TRUE)
# Display results for top DS cluster-marker combinations
topTable(out_DS, format_vals = TRUE)
# Plot heatmap for DA tests
plotHeatmap(out_DA, analysis_type = "DA")
# Plot heatmap for DS tests
plotHeatmap(out_DS, analysis_type = "DS")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.