Nothing
exactTest <- function(object, pair=1:2, dispersion="auto", rejection.region="doubletail", big.count=900, prior.count=0.125)
# Calculates exact p-values for the differential expression levels of tags in the two groups being compared.
# Davis McCarthy, Gordon Smyth.
# Created September 2009. Last modified 8 July 2012.
{
# Check input
if(!is(object,"DGEList")) stop("Currently only supports DGEList objects as the object argument.")
if(length(pair)!=2) stop("Pair must be of length 2.")
rejection.region <- match.arg(rejection.region,c("doubletail","deviance","smallp"))
# Get group names
group <- as.factor(object$samples$group)
levs.group <- levels(group)
if(is.numeric(pair))
pair <- levs.group[pair]
else
pair <- as.character(pair)
if(!all(pair %in% levs.group)) stop("At least one element of given pair is not a group.\n Groups are: ", paste(levs.group, collapse=" "))
# Get dispersion vector
if(is.null(dispersion)) dispersion <- "auto"
if(is.character(dispersion)) {
dispersion <- match.arg(dispersion,c("auto","common","trended","tagwise"))
dispersion <- switch(dispersion,
"common"=object$common.dispersion,
"trended"=object$trended.dispersion,
"tagwise"=object$tagwise.dispersion,
"auto"=getDispersion(object)
)
if(is.null(dispersion)) stop("specified dispersion not found in object")
if(is.na(dispersion[1])) stop("dispersion is NA")
}
ldisp <- length(dispersion)
ntags <- nrow(object$counts)
if(ldisp!=1 && ldisp!=ntags) stop("Dispersion provided by user must have length either 1 or the number of tags in the DGEList object.")
if(ldisp==1) dispersion <- rep(dispersion,ntags)
# Reduce to two groups
group <- as.character(group)
j <- group %in% pair
y <- object$counts[,j,drop=FALSE]
lib.size <- object$samples$lib.size[j]
norm.factors <- object$samples$norm.factors[j]
group <- group[j]
if(is.null(rownames(y))) rownames(y) <- paste("tag",1:ntags,sep=".")
# Normalized library sizes
lib.size <- lib.size * norm.factors
offset <- log(lib.size)
lib.size.average <- exp(mean(offset))
# logFC
prior.count <- prior.count*lib.size/mean(lib.size)
offset.aug <- log(lib.size+2*prior.count)
j1 <- group==pair[1]
n1 <- sum(j1)
if(n1==0) stop("No libraries for",pair[1])
y1 <- y[,j1,drop=FALSE]
abundance1 <- mglmOneGroup(y1+matrix(prior.count[j1],ntags,n1,byrow=TRUE),offset=offset.aug[j1],dispersion=dispersion)
j2 <- group==pair[2]
n2 <- sum(j2)
if(n1==0) stop("No libraries for",pair[2])
y2 <- y[,j2,drop=FALSE]
abundance2 <- mglmOneGroup(y2+matrix(prior.count[j2],ntags,n2,byrow=TRUE),offset=offset.aug[j2],dispersion=dispersion)
logFC <- (abundance2-abundance1)/log(2)
# Equalize library sizes
abundance <- mglmOneGroup(y,dispersion=dispersion,offset=offset)
e <- exp(abundance)
input.mean <- matrix(e,ntags,n1)
output.mean <- input.mean*lib.size.average
input.mean <- t(t(input.mean)*lib.size[j1])
y1 <- q2qnbinom(y1,input.mean=input.mean,output.mean=output.mean,dispersion=dispersion)
input.mean <- matrix(e,ntags,n2)
output.mean <- input.mean*lib.size.average
input.mean <- t(t(input.mean)*lib.size[j2])
y2 <- q2qnbinom(y2,input.mean=input.mean,output.mean=output.mean,dispersion=dispersion)
exact.pvals <- switch(rejection.region,
doubletail=exactTestDoubleTail(y1,y2,dispersion=dispersion,big.count=big.count),
deviance=exactTestByDeviance(y1,y2,dispersion=dispersion),
smallp=exactTestBySmallP(y1,y2,dispersion=dispersion)
)
AveLogCPM <- object$AveLogCPM
if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(object)
de.out <- data.frame(logFC=logFC, logCPM=AveLogCPM, PValue=exact.pvals)
rn <- rownames(object$counts)
if(!is.null(rn)) rownames(de.out) <- make.unique(rn)
new("DGEExact",list(table=de.out, comparison=pair, genes=object$genes))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.