cell.EM: immunoClust EMt-iteration on Cell-events given initial Model...

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/cell.clustering.R

Description

Performs EMt-iteration on cell event observations giving initial model parameters and returns the fitted clusters information in an object of class immunoClust.

Usage

1
2
3
4
5
6
7
cell.EM(data, parameters=NULL, expName="immunoClust Experiment", 
    history=NULL, state=NULL,
    K, w, m, s, B=50, tol=1e-5, bias=0.5, modelName="mvt")

cell.Estimation(data, parameters=NULL, expName="immunoClust Experiment",  
    history=NULL, state=NULL,
    K, w, m, s, modelName="mvt")

Arguments

data

A numeric matrix, data frame of observations, or object of class flowFrame.

parameters

A character vector specifying the parameters (columns) to be included in clustering. When it is left unspecified, all the parameters will be used.

expName

The name of the clustering experiment.

history

experimental; unused so far.

state

experimental: unused so far.

K

The number of clusters.

w

The K-dimensional vector of the mixture proportions.

m

The K x P-dimensional matrix of the K estimated cluster means.

s

The K x P x P-dimensional matrix of the K estimated cluster covariance matrices.

B

The maximum number of EMt-iterations.

tol

The tolerance used to assess the convergence of the EMt-algorithms.

bias

The ICL-bias used in the EMt-algorithm.

modelName

Used mixture model; either "mvt" or "mvn" for a t- or Gaussian mixture model respectively.

Details

Whereas cell.EM performs a complete EMt-iteration, cell.Estimate only calculates the posterior probabilities and the Maximum-A-Posterior estimators of cluster membership for all events.

Value

The fitted clusters information in an object of class immunoClust.

Author(s)

Till Sörensen till-antoni.soerensen@charite.de

References

Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. Cytometry A (accepted).

See Also

cell.ME, cell.FitModel

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
data(dat.fcs)
data(dat.exp)
## cell.clustering result for dat.fcs
r <- dat.exp[[1]]
summary(r)
## apply model parameter to all (unfiltered) events
dat.trans <- trans.ApplyToData(r, dat.fcs)
r2 <- cell.EM(dat.trans, parameters(r), K=ncls(r), 
            w=weights(r),m=mu(r),s=sigma(r))
summary(r2)

immunoClust documentation built on Nov. 8, 2020, 5:19 p.m.