Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/cell.clustering.R
The function fits initial model parameters to specific observed cell event data.
The function returns the cluster information of the fitted model in an object
of class immunoClust
.
1 2 3 | cell.FitModel(x, data, B=50, tol=1e-5, bias=0.5, modelName="mvt" )
cell.Classify(x, data, modelName="mvt" )
|
x |
An immunoClust object with the initial model parameter (parameters, K, w, mu, sigma). |
data |
A numeric matrix, data frame of observations, or object of class flowFrame. |
B |
The maximum number of EMt-iterations. |
tol |
The tolerance used to assess the convergence of the EMt-algorithms. |
bias |
The ICL-bias used in the EMt-algorithm. |
modelName |
Used mixture model; either |
These functions are wrapper of the functions cell.EM
and
cell.Estimation
, when model cluster parameters are combined in an object
of class immunoClust
and are used in the iterative cell event clustering
process cell.process
of immunoClust and are not intended to
be called directly.
The fitted model cluster information in an object of class
immunoClust
.
Till Sörensen till-antoni.soerensen@charite.de
Sörensen, T., Baumgart, S., Durek, P., Grützkau, A. and Häupl, T. immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. Cytometry A (accepted).
cell.process
, cell.EM
, cell.Estimation
1 2 3 4 5 | data(dat.fcs)
data(dat.exp)
r1 <- dat.exp[[1]]
dat.trans <- trans.ApplyToData(r1, dat.fcs)
r2 <- cell.FitModel(r1, dat.trans)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.