Nothing
vim.set <- function (object, set = NULL, useN = NULL, iter = NULL, standardize = NULL,
mu = 0, addMatImp = FALSE, prob.case = 0.5,
score = c("DPO", "Conc", "Brier", "PL"), ensemble = FALSE, rand = NULL)
{
if (!is(object, "logicBagg"))
stop("object must be an object of class logicBagg.")
if (!object$type %in% c(1:4, 9))
stop("Only available for classification, linear,\n",
"(multinomial) logistic and survival regression.")
if (is.null(standardize))
standardize <- !(object$type %in% c(2, 4))
if (object$type == 2) {
cat("Note: Since version 1.15.8 log2(MSEP) instead of MSEP is used to quantify",
"\n", "the importance of the (sets of) SNPs for predicting a ",
"quantitative response.", "\n\n", sep = "")
if (standardize)
warning("In the linear regression case, no standardization should be done.")
}
if (is.null(useN)){
if (object$type == 4)
useN <- TRUE
else{
useN <- object$vim$useN
if (is.null(useN))
stop("useN needs to be specified when importance = FALSE in logic.bagging.")
}
}
if (object$type == 4){
if(standardize)
stop("Standardization currently not available in the survival case.")
if(!is.null(iter)){
iter <- NULL
warning("Permutation of variables not available in the survival case. \n",
"Therefore iter is set to NULL.")
}
if(!useN){
useN <- TRUE
warning("In the survival case useN is ignored.")
}
}
score <- match.arg(score)
if (ensemble){
out <- vim.set.ensemble(object, score = score, addMatImp = addMatImp)
return(out)
}
if (object$type == 4){
list.primes <- logic.pimp(object)
allNull <- function (x) all(sapply(x, is.null))
if (any(sapply(list.primes, allNull))){
whichNull <- which(sapply(list.primes, allNull))
object$logreg.model <- object$logreg.model[-whichNull]
object$inbagg <- object$inbagg[-whichNull]
list.primes <- logic.pimp(object)
warning("Since ", length(whichNull), " of the models contain no variables, ",
"they are removed.", call. = FALSE)
}
}
cn <- colnames(object$data)
n.var <- ncol(object$data)
set <- checkSet(set, n.var, cn)
if (object$type == 1)
mat.improve <- compMatImpSet1(object, set, useN = useN,
iter = iter, rand = rand)
else mat.improve <- compMatImpSet3(object, set, useN = useN,
iter = iter, prob.case = prob.case,
score = score, rand = rand)
if (standardize)
vim <- standardizeMatImp(mat.improve, mu = mu)
else vim <- rowMeans(mat.improve, na.rm = TRUE)
names(vim) <- rownames(mat.improve) <- names(set)
measure <- paste0(if(object$type != 4) paste(if (standardize) "Standardized \n",
ifelse(is.null(iter), "Removing", "Permutation"), "Based Set"),
if((object$type == 4)) paste("Removing Based Set using",
switch(which(c("DPO", "Conc", "Brier", "PL") %in% score),
"DPO score", "Conc score", "Brier score", "Cox score")))
if (standardize)
threshold <- qt(1 - 0.05/nrow(mat.improve), ncol(mat.improve) - 1)
else {
if (object$type == 2)
threshold <- qf(1 - 0.05/nrow(mat.improve), ncol(mat.improve),
ncol(mat.improve))
else threshold <- mu <- NULL
}
if (!addMatImp)
mat.improve <- NULL
vim.out <- list(vim = vim, prop = NULL, primes = names(set),
type = object$type, param = NULL, mat.imp = mat.improve,
measure = measure, useN = useN, threshold = threshold,
mu = mu, iter = iter, name = "Set")
class(vim.out) <- "logicFS"
vim.out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.