Nothing
#' @title Plot univariate mixtures
#' @description Visualize data, centroids and stds for a given univariate Gaussian mixture model with PCA.
#' @param x data vector
#' @param means mode centroids
#' @param sds mode standard deviations
#' @param ws weight for each mode
#' @param title.text Plot title
#' @param xlab.text xlab.text
#' @param ylab.text ylab.text
#' @param binwidth binwidth for histogram
#' @param qofz Mode assignment probabilities for each sample. Samples x modes.
#' @param density.color Color for density lines
#' @param cluster.assignments Vector of cluster indices, indicating cluster for each data point
#' @param ... Further arguments for plot function.
#' @return Used for its side-effects
#' @author Leo Lahti \email{leo.lahti@@iki.fi}
#' @references See citation('netresponse') for citation details.
#' @keywords utilities
#' @examples # plotMixtureUnivariate(dat, means, sds, ws)
PlotMixtureUnivariate <- function(x, means = NULL, sds = NULL, ws = NULL, title.text = NULL,
xlab.text = NULL, ylab.text = NULL, binwidth = 0.05, qofz = NULL, density.color = "darkgray",
cluster.assignments = NULL, ...) {
# Circumvent warnings
..density.. <- NULL
vals <- NULL
varname <- NULL
# Find cluster for each sample
if (is.null(cluster.assignments)) {
if (is.null(qofz)) {
qofz <- P.r.s(t(matrix(x)), list(mu = means, sd = sds, w = ws), log = TRUE)
}
cluster.assignments <- apply(qofz, 1, which.max)
}
x <- unname(x)
df <- data.frame(list(x = x))
df$mode <- factor(cluster.assignments)
# Histogram and density plot
pg <- ggplot(df, aes(x = x))
pg <- pg + geom_histogram(aes(fill = mode), binwidth = binwidth)
pg <- pg + theme_bw() + xlab(xlab.text) + ylab(ylab.text)
pg <- pg + ggtitle(title.text)
# If normal mixture parameters are given, overlay Gaussians on top of the plot
if (!is.null(means)) {
# Estimated normal distributions from the mixture model
h <- hist(x, seq(min(x) - binwidth - 1/binwidth, max(x) + binwidth + 1/binwidth,
binwidth), plot = FALSE)
df$vals <- seq(min(df$x), max(df$x), length = nrow(df)) # estimation points for fitted Gaussians
scal <- max(h$counts)/max(ws[[1]] * dnorm(df$vals, mean = means[[1]], sd = sds[[1]]))
for (comp in seq_len(length(means))) {
df2 <- data.frame(list(vals = df$vals, varname = scal * ws[[comp]] *
dnorm(df$vals, mean = means[[comp]], sd = sds[[comp]])))
# Add in normal distribution
pg <- pg + geom_line(aes(x = vals, y = varname), color = density.color,
data = df2)
}
}
pg
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.