Nothing
##' Later
##' @param nlnet The nlnet
##' @param trainIn training data
##' @param trainOut fitted data
##' @return error
##' @author Henning Redestig, Matthias Scholz
errorHierarchic <- function(nlnet, trainIn, trainOut) {
weights <- nlnet@weights$current()
if(nlnet@inverse) {
numElements <- nlnet@net[1] * dim(trainOut)[2]
trainIn <- array(weights[1:numElements], dim=c(nlnet@net[1], dim(trainOut)[2]))
wTrainIn <- weights[1:numElements, drop=FALSE]
weights <- weights[(numElements + 1):length(weights),,drop=FALSE]
}
netDim <- dim(nlnet@net)
trainDim <- dim(trainOut)
weightMats <- vector2matrices(weights, nlnet@net)
hierarchicIdx <- nlnet@hierarchic$idx[,nlnet@hierarchic$var != 0, drop=FALSE]
hierarchicVar <- nlnet@hierarchic$var[,colSums(nlnet@hierarchic$var) != 0, drop=FALSE]
subnetNum <- length(hierarchicVar)
out <- array(0, dim=c(trainDim[1], trainDim[2], subnetNum))
sBias <- array(1, dim=c(1, trainDim[2]))
sExtract <- eval(parse(text=paste(nlnet@fct[1], "(trainIn)")))
Eitemize <- NULL
if(nlnet@hierarchic$layer > 1) { #this should not be executed at all if sequence is 1:0
for(layer in 1:(nlnet@hierarchic$layer - 1)) {
sExtract <- rbind(sBias, sExtract)
sExtract <- eval(parse(text=paste(nlnet@fct[layer + 1], "(weightMats[[layer]] %*% sExtract)")))
}
}
for(subnet in 1:subnetNum) {
sRecon <- sExtract
sRecon[hierarchicIdx[,subnet]==0,] <- 0
for(layer in nlnet@hierarchic$layer:(netDim[2] - 1)) {
sRecon <- rbind(sBias, sRecon)
sRecon <- eval(parse(text=paste(nlnet@fct[layer+1], "(weightMats[[layer]] %*% sRecon)")))
}
out[,,subnet] <- sRecon
## error function
eTmp <- (sRecon - trainOut)^2
eTmp[is.na(eTmp)] <- 0
Eitemize[subnet] <- sum(eTmp) * 0.5
if(!is.null(nlnet@dataDist))
Eitemize[subnet] <- 0.5 * sum(nlnet@dataDist * eTmp)
else
Eitemize[subnet] <- 0.5 * sum(eTmp)
}
error <- tcrossprod(hierarchicVar, rbind(Eitemize))
if(!is.null(nlnet@weightDecay))
error <- error + nlnet@weightDecay * 0.5 * sum(weights^2)
## smooth (0.01) weight decay also for input values
if(nlnet@inverse)
error <- error + 0.01 * nlnet@weightDecay * 0.5 * sum(wTrainIn^2)
return(list(error=error, out=out))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.