Nothing
##' Vector with current valid PCA methods
##' @title List PCA methods
##' @param which the type of methods to get. E.g. only get the PCA
##' methods based on the classical model where the fitted data is a
##' direct multiplication of scores and loadings.
##' @return A character vector with the current methods for doing PCA
##' @export
##' @author Henning Redestig
listPcaMethods <- function(which=c("all", "linear", "nonlinear")) {
switch(match.arg(which),
all={
return(c("svd", "nipals", "rnipals", "bpca", "ppca",
"svdImpute", "robustPca", "nlpca", "llsImpute",
"llsImputeAll"))
},
linear={
return(c("svd", "nipals", "rnipals", "bpca", "ppca",
"svdImpute", "robustPca"))
},
nonlinear={
return("nlpca")
})
}
##' Perform PCA on a numeric matrix for visualisation, information
##' extraction and missing value imputation.
##'
##' This method is wrapper function for the following set of pca
##' methods:
##'
##' \describe{\item{svd:}{Uses classical \code{prcomp}. See
##' documentation for \code{\link{svdPca}}.}
##'
##' \item{nipals:}{An iterative method capable of handling small
##' amounts of missing values. See documentation for
##' \code{\link{nipalsPca}}.}
##'
##' \item{rnipals:}{Same as nipals but implemented in R.}
##'
##' \item{bpca:}{An iterative method using a Bayesian model to handle
##' missing values. See documentation for \code{\link{bpca}}.}
##'
##' \item{ppca:}{An iterative method using a probabilistic model to
##' handle missing values. See documentation for \code{\link{ppca}}.}
##'
##' \item{svdImpute:}{Uses expectation maximation to perform SVD PCA
##' on incomplete data. See documentation for
##' \code{\link{svdImpute}}.}}
##'
##' Scaling and centering is part of the PCA model and handled by
##' \code{\link{prep}}.
##' @title Perform principal component analysis
##' @param object Numerical matrix with (or an object coercible to
##' such) with samples in rows and variables as columns. Also takes
##' \code{ExpressionSet} in which case the transposed expression
##' matrix is used. Can also be a data frame in which case all
##' numberic variables are used to fit the PCA.
##' @param method One of the methods reported by
##' \code{listPcaMethods()}. Can be left missing in which case the
##' \code{svd} PCA is chosen for data wihout missing values and
##' \code{nipalsPca} for data with missing values
##' @param nPcs Number of principal components to calculate.
##' @param scale Scaling, see \code{\link{prep}}.
##' @param center Centering, see \code{\link{prep}}.
##' @param completeObs Sets the \code{completeObs} slot on the
##' resulting \code{pcaRes} object containing the original data with
##' but with all NAs replaced with the estimates.
##' @param subset A subset of variables to use for calculating the
##' model. Can be column names or indices.
##' @param cv character naming a the type of cross-validation
##' to be performed.
##' @param ... Arguments to \code{\link{prep}}, the chosen pca
##' method and \code{\link{Q2}}.
##' @return A \code{pcaRes} object.
##' @references
##' Wold, H. (1966) Estimation of principal components and
##' related models by iterative least squares. In Multivariate
##' Analysis (Ed., P.R. Krishnaiah), Academic Press, NY, 391-420.
##'
##' Shigeyuki Oba, Masa-aki Sato, Ichiro Takemasa, Morito Monden,
##' Ken-ichi Matsubara and Shin Ishii. A Bayesian missing value
##' estimation method for gene expression profile
##' data. \emph{Bioinformatics, 19(16):2088-2096, Nov 2003}.
##'
##' Troyanskaya O. and Cantor M. and Sherlock G. and Brown P. and
##' Hastie T. and Tibshirani R. and Botstein D. and Altman RB. -
##' Missing value estimation methods for DNA microarrays.
##' \emph{Bioinformatics. 2001 Jun;17(6):520-5}.
##' @seealso \code{\link{prcomp}}, \code{\link{princomp}},
##' \code{\link{nipalsPca}}, \code{\link{svdPca}}
##' @examples
##' data(iris)
##' ## Usually some kind of scaling is appropriate
##' pcIr <- pca(iris, method="svd", nPcs=2)
##' pcIr <- pca(iris, method="nipals", nPcs=3, cv="q2")
##' ## Get a short summary on the calculated model
##' summary(pcIr)
##' plot(pcIr)
##' ## Scores and loadings plot
##' slplot(pcIr, sl=as.character(iris[,5]))
##'
##' ## use an expressionset and ggplot
##' data(sample.ExpressionSet)
##' pc <- pca(sample.ExpressionSet)
##' df <- merge(scores(pc), pData(sample.ExpressionSet), by=0)
##' library(ggplot2)
##' ggplot(df, aes(PC1, PC2, shape=sex, color=type)) +
##' geom_point() +
##' xlab(paste("PC1", pc@R2[1] * 100, "% of the variance")) +
##' ylab(paste("PC2", pc@R2[2] * 100, "% of the variance"))
##' @export
##' @keywords multivariate
##' @author Wolfram Stacklies, Henning Redestig
pca <- function(object, method, nPcs=2,
scale=c("none", "pareto", "vector", "uv"),
center=TRUE, completeObs=TRUE, subset=NULL,
cv=c("none","q2"), ...) {
if(inherits(object, 'data.frame')) {
num <- vapply(object, is.numeric, logical(1))
if(sum(num) < 2)
stop('no numeric data in supplied data.frame')
Matrix <- as.matrix(object[,num])
}
else if(inherits(object, "ExpressionSet")) {
Matrix <- t(exprs(object))
} else
Matrix <- as.matrix(object, rownames.force=TRUE)
if(!is.null(subset))
Matrix <- Matrix[,subset]
cv <- match.arg(cv)
scale <- match.arg(scale)
if (nPcs > ncol(Matrix)) {
warning("more components than matrix columns requested")
nPcs <- min(dim(Matrix))
}
if (nPcs > nrow(Matrix)) {
warning("more components than matrix rows requested")
nPcs <- min(dim(Matrix))
}
if (!checkData(Matrix, verbose=interactive()))
stop("Invalid data format.",
"Run checkData(data, verbose=TRUE) for details")
missing <- is.na(Matrix)
if(missing(method)) {
if(any(missing))
method <- 'nipals'
else
method <- 'svd'
}
if(any(missing) & method == 'svd') {
warning('data has missing values using nipals instead of user requested svd')
method <- 'nipals'
}
method <- match.arg(method, choices=listPcaMethods())
prepres <- prep(Matrix, scale=scale, center=center, simple=FALSE, ...)
switch(method,
svd={
res <- svdPca(prepres$data, nPcs=nPcs,...)
},
nipals={
res <- nipalsPca(prepres$data, nPcs=nPcs, ...)
},
rnipals={
res <- RnipalsPca(prepres$data, nPcs=nPcs, ...)
},
bpca={
res <- bpca(prepres$data, nPcs=nPcs, ...)
},
ppca={
res <- ppca(prepres$data, nPcs=nPcs, ...)
},
svdImpute={
res <- svdImpute(prepres$data, nPcs=nPcs, ...)
},
robustPca={
res <- robustPca(prepres$data, nPcs=nPcs, ...)
},
nlpca={
res <- nlpca(prepres$data, nPcs=nPcs, ...)
})
nPcs <- ncol(res@scores)
if(is.null(scores(res)) | is.null(loadings(res)) |
is.null(R2cum(res)) | is.null(method(res)))
stop(paste("bad result from pca method", method))
colnames(res@scores) <- paste("PC", 1:nPcs, sep="")
rownames(res@scores) <- rownames(Matrix)
if(all(dim(loadings(res)) == c(ncol(Matrix), nPcs))) {
colnames(res@loadings) <- paste("PC", 1:nPcs, sep="")
rownames(res@loadings) <- colnames(Matrix)
}
if(!is.null(subset))
res@subset <- subset
res@missing <- missing
res@nPcs <- nPcs
res@nObs <- nrow(Matrix)
res@nVar <- ncol(Matrix)
res@sDev <- apply(scores(res), 2, sd)
res@center <- prepres$center
res@centered <- center
res@scale <- prepres$scale
res@scaled <- scale
res@R2 <- res@R2cum[1]
if(length(res@R2cum) > 1)
res@R2 <- c(res@R2, diff(res@R2cum))
if (completeObs) {
cObs <- Matrix
if(method %in% listPcaMethods("nonlinear"))
cObs[missing] <- fitted(res, Matrix, pre=TRUE, post=TRUE)[missing]
else
cObs[missing] <- fitted(res, post=TRUE)[missing]
res@completeObs <- cObs
}
if(cv == "q2")
res@cvstat <- Q2(res, Matrix, nruncv=1, ...)
return(res)
}
##' Wrapper function for imputation methods based on nearest neighbour
##' clustering. Currently llsImpute only.
##'
##' This method is wrapper function to llsImpute, See documentation
##' for \code{link{llsImpute}}.
##' @title Nearest neighbour imputation
##' @param object Numerical matrix with (or an object coercible to
##' such) with samples in rows and variables as columns. Also takes
##' \code{ExpressionSet} in which case the transposed expression
##' matrix is used.
##' @param method For convenience one can pass a large matrix but only
##' use the variable specified as subset. Can be colnames or indices.
##' @param subset Currently "llsImpute" only.
##' @param ... Further arguments to the chosen method.
##' @return A \code{clusterRes} object. Or a list containing a
##' clusterRes object as first and an ExpressionSet object as second
##' entry if the input was of type ExpressionSet.
##' @export
##' @seealso \code{\link{llsImpute}}, \code{\link{pca}}
##' @keywords multivariate
##' @examples
##' data(metaboliteData)
##' llsRes <- nni(metaboliteData, k=6, method="llsImpute", allGenes=TRUE)
##' @author Wolfram Stacklies
nni <- function(object, method=c("llsImpute"), subset=numeric(), ...) {
isExprSet <- FALSE
if(inherits(object, "ExpressionSet")) {
set <- object
isExprSet <- TRUE
object <- t(exprs(object))
}
method <- match.arg(method)
if ( !checkData(as.matrix(object), verbose=interactive()) )
stop("Invalid data format, exiting...\n",
"Run checkData(data, verbose=TRUE) for details\n")
missing <- sum(is.na(object))
if(length(subset) > 0)
object <- object[,subset]
res <- llsImpute(object, ...)
return(res)
}
##' A function that can be used to visualise many PCs plotted against
##' each other
##'
##' Uses \code{\link{pairs}} to provide side-by-side plots. Note that
##' this function only plots scores or loadings but not both in the
##' same plot.
##' @title Plot many side by side scores XOR loadings plots
##' @param object \code{pcaRes} a pcaRes object
##' @param pcs \code{numeric} which pcs to plot
##' @param type \code{character} Either "scores" or "loadings" for
##' scores or loadings plot respectively
##' @param sl \code{character} Text labels to plot instead of a point,
##' if NULL points are plotted instead of text
##' @param hotelling \code{numeric} Significance level for the
##' confidence ellipse. NULL means that no ellipse is drawn.
##' @param ... Further arguments to \code{\link{pairs}} on which this
##' function is based.
##' @return None, used for side effect.
##' @seealso \code{prcomp}, \code{pca}, \code{princomp}, \code{slplot}
##' @export
##' @examples
##' data(iris)
##' pcIr <- pca(iris[,1:4], nPcs=3, method="svd")
##' plotPcs(pcIr, col=as.integer(iris[,4]) + 1)
##' @keywords multivariate
##' @author Henning Redestig
plotPcs <- function(object,
pcs=1:nP(object), type=c("scores", "loadings"), sl=NULL,
hotelling=0.95, ...) {
type <- match.arg(type)
panel <- function(x,y, ...) {
abline(h=0, v=0, col="black")
if(!is.null(hotelling)) {
A <- length(pcs)
el <- simpleEllipse(x, y, alfa=hotelling)
lines(el)
}
if(is.null(sl))
points(x, y, ...)
else
text(x, y, labels=sl,...)
}
switch(type,
scores={
labels <- paste("PC", pcs, "\n", "R^2 =", round(object@R2[pcs], 2))
pairs(scores(object)[,pcs], labels=labels,
panel=panel, upper.panel=NULL,...)
},
loadings={
if(method(object) == "nlpca")
stop("Loadings plot not applicable for non-linear PCA")
labels <- paste("PC", pcs, "\n", "R^2 =", round(object@R2[pcs], 2))
pairs(loadings(object)[,pcs], labels=labels, panel=panel,
upper.panel=NULL, ...)
})
}
##' A wrapper function for \code{prcomp} to deliver the result as a
##' \code{pcaRes} method. Supplied for compatibility with the rest
##' of the pcaMethods package. It is not recommended to use this
##' function directely but rather to use the \code{pca()} wrapper
##' function.
##' @title Perform principal component analysis using singular value
##' decomposition
##' @param Matrix Pre-processed (centered and possibly scaled)
##' numerical matrix samples in rows and variables as columns. No
##' missing values allowed.
##' @param nPcs Number of components that should be extracted.
##' @param varLimit Optionally the ratio of variance that should be
##' explained. \code{nPcs} is ignored if varLimit < 1
##' @param verbose Verbose complaints to matrix structure
##' @param ... Only used for passing through arguments.
##' @return A \code{pcaRes} object.
##' @seealso \code{prcomp}, \code{princomp}, \code{pca}
##' @examples
##' data(metaboliteDataComplete)
##' mat <- prep(t(metaboliteDataComplete))
##' pc <- svdPca(mat, nPcs=2)
##' ## better use pca()
##' pc <- pca(t(metaboliteDataComplete), method="svd", nPcs=2)
##' \dontshow{stopifnot(sum((fitted(pc) - t(metaboliteDataComplete))^2, na.rm=TRUE) < 200)}
##' @export
##' @keywords multivariate
##' @author Henning Redestig
svdPca <- function(Matrix, nPcs=2,
varLimit=1, verbose=interactive(), ...) {
pcs <- prcomp(Matrix, center=FALSE, scale.=FALSE)
imp <- summary(pcs)$importance
if(varLimit < 1)
nPcs <- sum(imp[3,] < varLimit) + 1
res <- new("pcaRes")
res@scores <- cbind(pcs$x[,1:nPcs])
res@loadings <- cbind(pcs$rotation[,1:nPcs])
res@R2cum <- imp[3,1:nPcs]
res@varLimit <- varLimit
res@method <- "svd"
return(res)
}
##' Get a confidence ellipse for uncorrelated bivariate data
##'
##' As described in 'Introduction to multi and megavariate data analysis
##' using PCA and
##' PLS' by Eriksson et al. This produces very similar ellipse as
##' compared to the ellipse function the ellipse package except that
##' this function assumes that and y are uncorrelated (which they of
##' are if they are scores or loadings from a PCA).
##' @title Hotelling's T^2 Ellipse
##' @param x first variable
##' @param y second variable
##' @param alfa confidence level of the circle
##' @param len Number of points in the circle
##' @seealso ellipse
##' @author Henning Redestig
##' @return A matrix with X and Y coordinates for the circle
simpleEllipse <- function(x, y, alfa=0.95, len=200) {
N <- length(x)
A <- 2
mypi <- seq(0, 2 * pi, length=len)
r1 <- sqrt(var(x) * qf(alfa, 2, N - 2) * (2*(N^2 - 1)/(N * (N - 2))))
r2 <- sqrt(var(y) * qf(alfa, 2, N - 2) * (2*(N^2 - 1)/(N * (N - 2))))
cbind(r1 * cos(mypi) + mean(x), r2 * sin(mypi) + mean(y))
}
# .onLoad <- function(libname, pkgname) {
# require("methods")
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.