Nothing
#' A wrapper function passed to \code{caret::train} to apply a random forest
#' classification algorithm built and tested on user-defined binned domain
#' data from \code{\link{createTADdata}}.
#'
#' @param trainData Data frame, the binned data matrix to built a random forest
#' classifiers (can be obtained using \code{\link{createTADdata}}). Required.
#' @param testData Data frame, the binned data matrix to test random forest
#' classifiers (can be obtained using \code{\link{createTADdata}}). The first
#' column must be a factor with positive class "Yes". Default is NULL in which
#' case no performances are evaluated.
#' @param tuneParams List, providing \code{mtry}, \code{ntree}, and
#' \code{nodesize} parameters to feed into \code{\link{randomForest}}. Default
#' is list(mtry = ceiling(sqrt(ncol(trainData) - 1)), ntree = 500,
#' nodesize = 1). If multiple values are provided, then a grid search is
#' performed to tune the model. Required.
#' @param cvFolds Numeric, number of k-fold cross-validation to perform in
#' order to tune the hyperparameters. Required.
#' @param cvMetric Character, performance metric to use to choose optimal
#' tuning parameters (one of either "Kappa", "Accuracy", "MCC", "ROC", "Sens",
#' "Spec", "Pos Pred Value", "Neg Pred Value"). Default is "Accuracy".
#' @param verbose Logical, controls whether or not details regarding modeling
#' should be printed out. Default is TRUE.
#' @param model Logical, whether to keep the model object. Default is TRUE.
#' @param importances Logical, whether to extract variable importances. Default
#' is TRUE.
#' @param impMeasure Character, indicates the variable importance measure to
#' use (one of either "MDA" (mean decrease in accuracy) or "MDG" (mean decrease
#' in gini)). Ignored if importances = FALSE.
#' @param performances Logical, indicates whether various performance metrics
#' should be extracted when validating the model on the test data. Ignored if
#' testData = NULL.
#'
#' @return A list containing: 1) a train object from \code{caret} with model
#' information, 2) a data.frame of variable importance for each feature
#' included in the model, and 3) a data.frame of various performance metrics
#' @export
#'
#' @importFrom ModelMetrics mcc
#' @importFrom PRROC pr.curve
#' @importFrom pROC roc
#' @importFrom pROC auc
#' @importFrom stats predict
#' @import randomForest caret e1071
#'
#' @examples
#' # Read in ARROWHEAD-called TADs at 5kb
#' data(arrowhead_gm12878_5kb)
#'
#' # Extract unique boundaries
#' bounds.GR <- extractBoundaries(domains.mat = arrowhead_gm12878_5kb,
#' preprocess = FALSE,
#' CHR = c("CHR21", "CHR22"),
#' resolution = 5000)
#'
#' # Read in GRangesList of 26 TFBS
#' data(tfbsList)
#'
#' # Create the binned data matrix for CHR1 (training) and CHR22 (testing)
#' # using 5 kb binning, distance-type predictors from 26 different TFBS from
#' # the GM12878 cell line, and random under-sampling
#' tadData <- createTADdata(bounds.GR = bounds.GR,
#' resolution = 5000,
#' genomicElements.GR = tfbsList,
#' featureType = "distance",
#' resampling = "rus",
#' trainCHR = "CHR21",
#' predictCHR = "CHR22")
#'
#' # Perform random forest using TADrandomForest by tuning mtry over 10 values
#' # using 3-fold CV
#' tadModel <- TADrandomForest(trainData = tadData[[1]],
#' testData = tadData[[2]],
#' tuneParams = list(mtry = c(2,5,8,10,13,16,18,21,24,26),
#' ntree = 500,
#' nodesize = 1),
#' cvFolds = 3,
#' cvMetric = "Accuracy",
#' verbose = TRUE,
#' model = TRUE,
#' importances = TRUE,
#' impMeasure = "MDA",
#' performances = TRUE)
TADrandomForest <- function(trainData,
testData = NULL,
tuneParams = list(mtry = ceiling(sqrt(ncol(trainData)-1)),
ntree = 500,
nodesize = 1),
cvFolds = 3,
cvMetric = "Accuracy",
verbose = FALSE,
model = TRUE,
importances = TRUE,
impMeasure = "MDA",
performances = FALSE){
#################################
#PREDICTING TAD BOUNDARY REGIONS#
#################################
########################################################################
#Establishing summary function to evaluate cross validation performance#
########################################################################
predictiveValues <- function (data, lev = NULL, model = NULL,...){
PPVobj <- posPredValue(data[, "pred"], data[, "obs"])
NPVobj <- negPredValue(data[, "pred"], data[, "obs"])
out <- c(PPVobj, NPVobj)
#out <- c(NPVobj)
names(out) <- c("Pos Pred Value", "Neg Pred Value")
#names(out) <- c("Neg Pred Value")
out}
allSummary <- function(data, lev = NULL, model = NULL){
lvls <- levels(data$obs)
#mcc
mcc <- mcc(ifelse(data$obs == lev[2], 0, 1), data[, lvls[1]], cutoff = .5)
#roc
b1 <- twoClassSummary(data, lev, model)
#auprc & f1
#c1 <- prSummary(data, lev, model)
#ppv & npv
d1 <- predictiveValues(data, lev, model)
#accuracy & kappa
e1 <- defaultSummary(data, lev, model)
out <- c(mcc, b1, d1, e1)
names(out)[1] <- c("MCC")
out
}
########################################
#Establishing random forest using caret#
########################################
customRF <- getModelInfo(model = "rf", regex = FALSE)
customRF$rf$parameters <- data.frame(parameter = c("mtry", "ntree", "nodesize"),
class = rep("numeric", 3),
label = c("mtry", "ntree", "nodesize"))
customRF$rf$grid <- function(x, y, len = NULL, search = "grid") {}
customRF$rf$fit <- function(x, y, wts, param, lev, last, weights, classProbs, ...) {
randomForest(x,
y,
mtry = param$mtry,
ntree=param$ntree,
nodesize = param$nodesize,
importance=TRUE,
...)
}
##########################
#Establishing tuning grid#
##########################
tunegrid <- expand.grid(mtry = tuneParams[[1]],
ntree = tuneParams[[2]],
nodesize = tuneParams[[3]])
###############################
#Establishing control function#
###############################
seeds <- vector(mode = "list", length = (cvFolds+1))
for(i in seq_len(cvFolds)) {
seeds[[i]] <- sample.int(n=100000, nrow(tunegrid))
}
#for the last model
seeds[[cvFolds+1]] <- sample.int(100000, 1)
control <- trainControl(seeds = seeds,
method = "cv",
number = cvFolds,
verboseIter = ifelse(verbose == TRUE, TRUE, FALSE),
## Estimate class probabilities
classProbs = TRUE,
## Evaluate performance using
## the following function
summaryFunction = allSummary,
allowParallel = FALSE)
tadModel <- train(y~.,
data = trainData,
method = customRF$rf,
metric = cvMetric,
tuneGrid = tunegrid,
trControl = control)
#####################################
#EXTRACTING IMPORTANCES/COEFFICIENTS#
#####################################
if(impMeasure == "MDA") {
rfimpvars <- data.frame(Feature=rownames(randomForest::importance(tadModel$finalModel, scale = TRUE)),
Importance=as.vector(randomForest::importance(tadModel$finalModel, scale = TRUE)[,3]))
rfimpvars <- rfimpvars[order(rfimpvars$Importance, decreasing = TRUE),]
}else if(impMeasure == "MDG") {
rfimpvars <- data.frame(Feature=rownames(randomForest::importance(tadModel$finalModel, scale = TRUE)),
Importance = as.vector(randomForest::importance(tadModel$finalModel, scale = TRUE)[,4]))
rfimpvars <- rfimpvars[order(rfimpvars$Importance, decreasing = TRUE),]
}else {
rfimpvars <- NA
}
#################################
#EVALUATING PERFORMANCES #
#################################
if(!(is.null(testData)) & performances == TRUE){
rfperf <- data.frame(Metric = c("TN",
"FN",
"FP",
"TP",
"Total",
"Sensitivity",
"Specificity",
"Kappa",
"Accuracy",
"BalancedAccuracy",
"Precision",
"FPR",
"FNR",
"NPV",
"MCC",
"F1",
"AUC",
"Youden",
"AUPRC"),
Performance = NA)
pred.tadModel <- as.vector(predict(tadModel,
newdata=testData[,-1],
type = "prob")[,"Yes"])
fg <- pred.tadModel[testData$y == "Yes"]
bg <- pred.tadModel[testData$y == "No"]
pr <- pr.curve(scores.class0 = fg, scores.class1 = bg, curve = TRUE)
pred.tadModel2 <- predict(tadModel,
newdata = testData[,-1],
type = "raw")
confMat <- caret::confusionMatrix(data=pred.tadModel2, testData[,1], positive="Yes")
TN <- as.numeric(confMat$table[1,1])
FN <- as.numeric(confMat$table[1,2])
FP <- as.numeric(confMat$table[2,1])
TP <- as.numeric(confMat$table[2,2])
rfperf[1,2] <- TN
rfperf[2,2] <- FN
rfperf[3,2] <- FP
rfperf[4,2] <- TP
rfperf[5,2] <- sum(confMat$table)
rfperf[6,2] <- as.vector(confMat$byClass["Sensitivity"])
rfperf[7,2] <- as.vector(confMat$byClass["Specificity"])
rfperf[8,2] <- as.vector(confMat$overall["Kappa"])
rfperf[9,2] <- as.vector(confMat$overall["Accuracy"])
rfperf[10,2] <- ((TP/(TP+FN)) + (TN/(FP+TN)))/2
rfperf[11,2] <- TP/(TP+FP)
rfperf[12,2] <- FP/(FP+TN)
rfperf[13,2] <- FN/(FN+TN)
rfperf[14,2] <- TN/(TN+FN)
rfperf[15,2] <- (TP*TN - FP*FN)/( sqrt( (TP+FP)*(TP+FN)*(TN+FP)*(TN+FN) ) )
rfperf[16,2] <- (2*(TP/(TP+FN))*(TP/(TP+FP)))/((TP/(TP+FN)) + ((TP/(TP+FP))))
rfperf[17,2] <- pROC::auc(pROC::roc(testData$y, pred.tadModel, quiet = TRUE))
rfperf[18,2] <- (TP/(TP + FN)) + (TN/(TN + FP)) - 1
rfperf[19,2] <- pr$auc.integral
}
results_list <- list()
if(model == TRUE){results_list[[1]] <- tadModel}else{results_list[[1]] <- NA}
if(importances == TRUE){results_list[[2]] <- rfimpvars}else{results_list[[2]] <- NA}
if(!(is.null(testData)) & performances == TRUE){results_list[[3]] <- rfperf}else{results_list[[3]] <- NA}
return(results_list)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.