Nothing
## maskTracks-methods
##' @name maskTracks
##' @aliases maskTracks filterOnCell sampleTracks
##' @title maskTracks
##' @rdname maskTracks-methods
##' @docType methods
##' @description apply binary image masks to lists of track lists
#
##' @usage
##' maskTracks(folder, trackll)
##'
##' filterOnCell(trackll, numTracks = 0)
##'
##' sampleTracks(trackll, num = 0)
##' @param folder Full path to the output files.
##' @param trackll A list of track lists.
##' @param numTracks Minimum number of required tracks in the trackll
##' @param num Number of tracks to randomly sample per trackl in trackll
##' @return masked tracks in trackll format
##' @examples
##' #Basic masking with folder path with image masks
##' folder = system.file('extdata','ImageJ',package='sojourner')
##' trackll = createTrackll(folder=folder, input=3)
##' trackll.masked <- maskTracks(folder = folder, trackll = trackll)
##'
##' #Compare the masking effect
##' plotTrackOverlay(trackll)
##' plotTrackOverlay(trackll.masked)
##'
##' #Plot mask
##' mask.list=list.files(path=folder,pattern='_MASK.tif',full.names=TRUE)
##' plotMask(folder)
##'
##' #If Nuclear image is available
##' plotNucTrackOverlay(folder=folder,trackll=trackll)
##' plotNucTrackOverlay(folder=folder,trackll=trackll.masked)
##'
##' #Plot mask
##' plotMask(folder=folder)
##'
##' @details
##' IMPORTANT: It will take an extremely long time to mask large datasets.
##' Filter/trim first using filterTrack() and trimTrack(), then mask using
##' maskTracks(folder, trackll)!
##' Note the mask file should have the same name as the output files with a
##' '_MASK.tif' ending.
##' If there are more mask files than trackll, masking will fail. If there are
##' less mask files, trackls without masks will be deleted. Users can use
##' plotMask() and plotTrackOverlay() to see the mask and its effect on
##' screening tracks.
##'
##' filterOnCell() eliminates all trackl in trackll that has less than
##' numTracks tracks.
##'
##' sampleTracks() randomly samples num number of tracks for each trackl in
##' trackll.
##' @importFrom pixmap getChannels
##' @export maskTracks
##' @export filterOnCell
##' @export sampleTracks
##-----------------------------------------------------------------------------
## read in mask and derive positive pix form a mask
maskPoint = function(mask.file, plot = FALSE) {
mask.file.name = basename(mask.file)
# read in tiff mask library(rtiff)
cat("Reading mask file ", mask.file.name, "\n")
# mask = rtiff::readTiff(fn = mask.file)
mask = tiff2pixmap(fn = mask.file)
# plot(mask)
pospt = which(mask@red != 0, arr.ind = TRUE)
pos.point = with(data.frame(pospt), data.frame(x = col, y = row))
# horizontal is the same vertical is fliped as the pixels is counted
# from upper left in the image, but is counted from lower left in the
# plot.
if (plot) {
plot(mask)
plot(x = pos.point$x, y = pos.point$y)
# ggplot(pos.point,aes(x=x,y=y))+geom_point()
}
return(pos.point)
}
##-----------------------------------------------------------------------------
## Use each trajectory's geometric center as unit for clusterization.
## Each data point is an averaged trajectory.
trackCenter = function(trackll) {
# arithmetic mean for geometric center (centroid)
track.center = list()
length(track.center) = length(trackll)
names(track.center) = names(trackll)
for (i in seq_along(trackll)) {
track.center[[i]] = lapply(trackll[[i]], function(x) {
# round coords
apply(x, 2, function(coord) {
round(mean(coord))
})
})
}
return(track.center)
}
##-----------------------------------------------------------------------------
## track.center and pos.point should be one to one cooresponding
posTracks = function(track.center, pos.point) {
# convert list to data.frame
track.center.df = do.call(rbind.data.frame, track.center)
names(track.center.df) = c("x", "y", "z", "Frame")
# change rownames to number to avoid PC mac difference in rowname when
# do.call rbind
rownames(track.center.df) = seq(1, dim(track.center.df)[1])
pos.tracks = plyr::match_df(track.center.df, pos.point, on = c("x",
"y"))
return(pos.tracks)
}
##-----------------------------------------------------------------------------
##
maskTracks = function(folder, trackll) {
# read in mask
maskl = list.files(path = folder, pattern = "_MASK.tif", full.names = TRUE)
if (length(maskl) == 0) {
cat("No image mask file ending '_MASK.tif' found.\n")
}
if (length(maskl) > length(trackll)) {
stop("More masks than trackl.\n")
}
# make mask list and trackll one-to-one, delete extra trackl
maskl.check = list()
maskl.names = gsub("_MASK.tif", "", basename(maskl))
trackll.names = gsub("[.].*", "", names(trackll))
for (i in seq_along(trackll.names)) {
found = FALSE
for (j in seq_along(maskl.names)) {
if (trackll.names[[i]] == maskl.names[[j]]) {
maskl.check[[length(maskl.check) + 1]] = maskl[j]
found = TRUE
break
}
}
if (!found) {
cat(paste(names(trackll)[[i]],
"mask not found. Trackl deleted from masked output.\n",
sep = " "))
trackll[[i]] <- NULL
}
}
maskl = maskl.check
mask.track.index = list()
length(mask.track.index) = length(trackll)
names(mask.track.index) = names(trackll)
masked.tracks = list()
length(masked.tracks) = length(trackll)
names(masked.tracks) = names(trackll)
for (i in seq_along(trackll)) {
## Finds all track centers
track.center = trackCenter(trackll)[[i]]
## Returns all positive mask pixel locations
pos.point = maskPoint(maskl[[i]], plot = FALSE)
## Filters all positive track centers
mask.track.index[[i]] = posTracks(track.center, pos.point)
## Collects track indexes to keep
index = rownames(mask.track.index[[i]])
## Filters only such indexes in the raw trackll[i]
masked.tracks[[i]] = lapply(trackll[i], function(x) {
x[as.numeric(index)]
})[[1]]
}
cat("\nAll files masked.\n")
return(masked.tracks)
}
# Function masks, separates by cell, displays cell areas and mean
# intensities, and filters.
# indexCell = function(folder, trackll, areaFilter = c(0, Inf),
# intensityFilter = c(0, Inf), export = FALSE, max.pixel = 128) {
#
# # Read in mask
# maskl = list.files(path = folder, pattern = "_MASK.tif", full.names = TRUE)
#
# # Read in nuclear image
# glowl = list.files(path = folder, pattern = "_Nuclei.tif",
# full.names = TRUE)
#
# if (length(maskl) == 0) {
# cat("No image mask file ending '_MASK.tif' found.\n")
#
# }
#
# if (length(maskl) > length(trackll)) {
# stop("More masks than trackl.\n")
# }
#
# # Make mask list and trackll one-to-one and onto, delete extra trackl
# maskl.check = list()
# maskl.names = gsub("_MASK.tif", "", basename(maskl))
# trackll.names = gsub("[.].*", "", names(trackll))
# for (i in seq_along(trackll.names)) {
# found = FALSE
# for (j in seq_along(maskl.names)) {
# if (trackll.names[[i]] == maskl.names[[j]]) {
# maskl.check[[length(maskl.check) + 1]] = maskl[j]
# found = TRUE
# break
# }
# }
# if (!found) {
# cat(paste(names(trackll)[[i]],
# "mask not found. Trackl deleted from masked output.\n",
# sep = " "))
# trackll[[i]] <- NULL
# }
# }
# maskl = maskl.check
#
# # Instantiate new variables
# masked.trackll = list()
# raw.names = names(trackll)
# cell.count = list()
# length(cell.count) = length(trackll)
#
# areas = list()
# intensities = list()
#
# ## Find all track centers
# track.center = trackCenter(trackll)
#
# # Loop through each trackl
# for (i in seq_along(trackll)) {
#
# ## Returns all positive mask pixel locations
# invisible(capture.output(pos.point <- maskPoint(maskl[[i]],
# plot = FALSE)))
#
# # Instantiate empty
# binary.mat = matrix(rep(0, len = max.pixel * max.pixel),
# nrow = max.pixel)
#
# # Fill with binary pospoints
# for (m in seq_len(nrow(pos.point))) {
# binary.mat[pos.point[[1]][[m]], pos.point[[2]][[m]]] = 1
# }
#
# # Calculate connected components and label accordingly
# labeled.mat <- SDMTools::ConnCompLabel(binary.mat)
#
# # FOR VISUALIZING THE LABELED MASK
# # image(t(labeled.mat[128:1,]),col=c('grey',
# # rainbow(length(unique(labeled.mat))-1)))
#
# pos.points.indexed = list()
# length(pos.points.indexed) = max(labeled.mat)
#
# # Convert labeled.mat to lists of pos.points per cell
# for (j in seq_len(nrow(pos.point))) {
# pos.points.indexed[[labeled.mat[pos.point[j, ]$x, pos.point[j,
# ]$y]]] <- rbind(pos.points.indexed[[labeled.mat[pos.point[j,
# ]$x, pos.point[j, ]$y]]], pos.point[j, ])
# }
#
# ## Display Area ##
# cat(maskl.names[[i]], "\n", "Cell Areas (pixels squared): ", "\n",
# sep = "")
# areal <- vapply(pos.points.indexed, nrow, FUN.VALUE=integer(1))
# cat(cat(areal, sep = "\n"))
# areas <- append(areas, areal)
#
#
# ## Display Intensity ##
# glow = t(matrix(pixmap::getChannels(rtiff::readTiff(glowl[[i]])),
# nrow = max.pixel, ncol = max.pixel))
# raw.intensities = rep(list(list()), max(labeled.mat))
# for (row in seq_len(nrow(labeled.mat))) {
# for (col in seq_len(ncol(labeled.mat))) {
# if (labeled.mat[row, col] != 0) {
# raw.intensities[[labeled.mat[row, col]]][[length(
# raw.intensities[[labeled.mat[row, col]]]) + 1]] =
# glow[row, col]
# }
# }
# }
# cat("Cell Intensities (grayscale): ", "\n", sep = "")
# intensityl <- list()
# for (cell in seq_along(raw.intensities)) {
# intensityl[[cell]] <- mean(unlist(raw.intensities[[cell]]))
# cat(paste(intensityl[[cell]], "\n"))
# }
# cat("\n")
# intensities <- append(intensities, intensityl)
#
#
# # Update cell count per trackl
# cell.count[[i]] <- length(pos.points.indexed)
#
# # Loop through each cell
# for (k in seq_along(pos.points.indexed)) {
#
# mask.track.index = list()
# length(mask.track.index) = length(trackll)
# names(mask.track.index) = names(trackll)
#
# ## Filters all positive track centers
# mask.track.index[[k]] = posTracks(track.center[[i]],
# pos.points.indexed[[k]])
#
# ## Collects track indexes to keep
# index = rownames(mask.track.index[[k]])
#
# ## Filters only such indexes in the raw trackll[i]
# masked.trackll[[length(masked.trackll) + 1]] = lapply(trackll[i],
# function(x) {
# x[as.numeric(index)]
# })[[1]]
# }
#
# }
#
# # print(areas, row.names = FALSE) print(intensities, row.names = FALSE)
#
# # Edit the names with concatenated cell number to trackl names
# masked.names = list()
# for (c in seq_along(cell.count)) {
# for (v in seq_len(cell.count[[c]])) {
# masked.names[[length(masked.names) + 1]] <- paste(raw.names[c],
# toString(v), sep = "_")
# }
# }
# names(masked.trackll) <- masked.names
#
# if (export) {
# df <- data.frame(matrix(ncol = 3, nrow = 0))
# colnames(df) <- c("Cell", "Area (pixel sq)", "Intensity (grayscale)")
# }
#
# # Filter
# j = 1
# for (i in seq_along(areas)) {
# if (areas[[i]] > areaFilter[[2]] || areas[[i]] < areaFilter[[1]] ||
# intensities[[i]] > intensityFilter[[2]] || intensities[[i]] <
# intensityFilter[[1]]) {
# masked.trackll[[j]] <- NULL
# } else {
# if (export) {
# df[nrow(df) + 1, ] = list(names(masked.trackll)[[j]],
# areas[[i]],
# intensities[[i]])
# }
# j = j + 1
# }
# }
# cat("\nOnly cell with areas between ", areaFilter[[1]], " and ",
# areaFilter[[2]], " pixels sq kept.", sep = "")
# cat("\nOnly cell with avg intensities between ", intensityFilter[[1]],
# " and ", intensityFilter[[2]], " grayscale kept.", sep = "")
# if (export) {
# write.csv(df, file = "indexCell.csv")
# cat("\nindexCell.csv exported to working directory.")
# }
#
# cat(paste("\n\nAll files masked,",
# "separated by cell indexes, and filters applied.\n"))
# return(masked.trackll)
# }
filterOnCell = function(trackll, numTracks = 0) {
if (numTracks == 0) {
cat("\nEnter a lower limit for number of tracks.\n")
} else {
i = 1
while (i != length(trackll)) {
if (length(trackll[[i]]) < numTracks) {
trackll[[i]] <- NULL
} else {
i = i + 1
}
}
}
return(trackll)
}
sampleTracks = function(trackll, num = 0) {
if (num == 0) {
cat("\nEnter sample size.\n")
} else {
for (i in seq_along(trackll)) {
trackll[[i]] <- sample(trackll[[i]], num)
}
return(trackll)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.