Nothing
# ## readDiaSessions-methods
# ##' @name readDiaSessions
# ##' @aliases readDiaSessions
# ##' @title readDiaSessions
# ##' @rdname readDiaSessions-methods
# ##' @docType methods
#
# ##' @description take in a Diatrack .mat session file as input, along with
# ##' several other user-configurable parameters and output options, to return a
# ##' track list of all the trajectories found in the session file
# ##' @usage
# ##' readDiaSessions(folder, ab.track = FALSE, cores = 1, frameRecord = TRUE)
# ##'
# ##' @param folder Full path to Diatrack .mat session files output folder.
# ##' @param ab.track Use absolute coordinates for tracks.
# ##' @param cores Number of cores used for parallel computation. This can be
# ##' the cores on a workstation, or on a cluster. Tip: each core will be
# ##' assigned to read in a file when paralleled.
# ##' @param frameRecord Add a fourth column to the track list after the
# ##' xyz-coordinates for the frame that coordinate point was found (especially
# ##' helpful when linking frames).
# ##' @return trackll
# ##' @details
# ##' The naming scheme for each track is as follows:
# ##'
# ##' [Last five characters of the file name].[Start frame #].[Length].[Track #]
# ##'
# ##' (Note: The last five characters of the file name, excluding the extension,
# ##' cannot contain '.')
# ##'
# ##' (Note: readDiaSessions supports reading in intensity values)
#
# ##' @examples
# ##' #Basic function call of readDiaSessions
# ##' # hsf_folder=system.file('extdata', 'HSF_2', package='sojourner')
# ##' # trackll <- readDiaSessions(folder=hsf_folder)
#
# ##'
# # @export readDiaSessions
#
##' @importFrom R.matlab readMat
###############################################################################
#### Note ####
# This script takes Diatrack .mat files as input, and returns a list of
# data frames (a track list) of all the particle trajectories. The aim
# is to optimize and un-censor this process, instead of having to use
# MATLAB to extract a large .txt file which is then fed into R.
# Additional features: Adding frame records, removing frame records,
# outputing column-wise and row-wise to .csv files, linking skipped
# frames
#### Testing ####
# A .mat session file with 10117 frames was used to test both scripts.
# Using the MATLAB script, a 272.6MB .txt file was first created and
# was then fed into the readDiatrack() script to output track lists.
# Automating this process using 'matlabr' resulted in 4488 censored
# tracks (should be 4487 tracks since the script does not censor first
# frame) in 3:48 mins.
# Using readDiaSessions, the intermediate .txt file was no longer
# needed to be created and the session file directly results in track
# lists. This script resulted in 34689 uncensored tracks in 2:01 mins.
#### readDiaSessions ####
# Install packages and dependencies install.packages('R.matlab')
# library(R.matlab)
.readDiaSessions = function(file, interact = FALSE, ab.track = FALSE,
frameRecord = FALSE) {
# Interactively open window
if (interact == TRUE) {
file = file.choose()
}
# Start timer if (timer == TRUE) { start.time = Sys.time() }
# Collect file name information
file.name = basename(file)
file.subname = substr(file.name, start = nchar(file.name) - 8,
stop = nchar(file.name) - 4)
# Display starter text
cat("\nReading Diatrack session file: ", file.name, "...\n")
# Pre-process data (for both newer and older session file versions)
# Successor and predecessor rows of first frame switched for
# consistency (Unsure why Diatrack reverses the ordering of these two
# rows for the first frame)
data <- readMat(file)$tracks
if (length(data[1][[1]][[1]]) == 7) {
temp <- data[1][[1]][[1]][[7]]
data[1][[1]][[1]][[7]] <- data[1][[1]][[1]][[6]]
succ = 7
} else if (length(data[1][[1]][[1]]) == 8) {
temp <- data[1][[1]][[1]][[8]]
data[1][[1]][[1]][[8]] <- data[1][[1]][[1]][[7]]
succ = 8
} else {
cat("ERROR: Use a different Diatrack version.")
}
data[1][[1]][[1]][[6]] <- temp
pred = 6
# Data structure of data for future reference:
# data[FRAME][[1]][[1]][[ROW]][[COL]]
# Instantiate indexing variables, the track list, and the start frame
# list
startIndex = 0
startFrame = 1
trajectoryIndex = 1
track.list = list()
frame.list = list()
length.list = list()
# Loop for each trajectory track to be saved into track list
repeat {
# Loop until the next particle without a predecessor is found
repeat {
# Basic iteration through indexes and then through frames
if (startIndex == 0 || startIndex <
ncol(data[[startFrame]][[1]][[1]])) {
startIndex = startIndex + 1
} else {
startFrame = startFrame + 1
startIndex = 1
}
# Check at each iteration Break at end frame
if (startFrame > length(data)) {
break
} else if (length(data[startFrame][[1]][[1]][[1]]) == 0) {
# Iterate to next frame at empty frames
next
} else if (data[startFrame][[1]][[1]][[pred]][[startIndex]] ==
0) {
# Break if particle is found
break
}
# Do nothing and iterate to next indexed particle if no particle is
# found
}
# Break track loop at end frame
if (startFrame > length(data)) {
break
}
# Instantiate initial frame and index coordinates into looping frame
# and index coordinates
frame = startFrame
index = startIndex
# Create temporary track to insert into track list
track <- data.frame(x = numeric(), y = numeric(), z = integer())
# Loop through every instance the particle exists and add its data to
# track Break once it no longer has successors
repeat {
RefinedCooX = round(data[frame][[1]][[1]][[2]][[index]], 2)
RefinedCooY = round(data[frame][[1]][[1]][[1]][[index]], 2)
RefinedCooZ = round(data[frame][[1]][[1]][[3]][[index]], digits = 1)
Intensity = round(data[frame][[1]][[1]][[4]][[index]], 2)
if (frameRecord) {
track <- rbind(track, data.frame(x = RefinedCooX,
y = RefinedCooY, z = RefinedCooZ, Frame = frame,
Intensity = Intensity))
} else {
track <- rbind(track, data.frame(x = RefinedCooX,
y = RefinedCooY, z = RefinedCooZ, Intensity = Intensity))
}
if (data[frame][[1]][[1]][[succ]][[index]] != 0) {
index = data[frame][[1]][[1]][[succ]][[index]]
frame = frame + 1
} else break
}
# Add start frame to frame list
frame.list[[length(frame.list) + 1]] <- startFrame
# Add track length to length list
length.list[[length(length.list) + 1]] <- nrow(track)
# Calcualte absolute track coordinates if desired
if (ab.track) {
track <- abTrack(track)
}
# Append temporary track for particle into track list and iterate to
# the next trajectory
track.list[[trajectoryIndex]] <- track
trajectoryIndex = trajectoryIndex + 1
}
# Name track list: [Last five characters of the file name without
# extension (cannot contain '.')].[Start frame #].[Length].[Track #]
names(track.list) = paste(file.subname, frame.list, length.list,
c(seq_along(track.list)), sep = ".")
# File read and processed confirmation text
cat("\n", file.subname, "read and processed.\n")
# Display stop timer if (timer == TRUE) { end.time = Sys.time();
# time.taken = end.time - start.time; cat('Duration: ');
# cat(time.taken); cat(' mins\n'); }
# Return track list
return(track.list)
}
#### readDiaSessions ####
readDiaSessions = function(folder, ab.track = FALSE, cores = 1,
frameRecord = TRUE) {
trackll = list()
track.holder = c()
# getting a file list of Diatrack files in a directory
file.list = list.files(path = folder, pattern = ".mat", full.names = TRUE)
file.name = list.files(path = folder, pattern = ".mat", full.names = FALSE)
folder.name = basename(folder)
# read in tracks list of list of data.frames, first level list of file
# names and second level list of data.frames
max.cores = parallel::detectCores(logical = TRUE)
if (cores == 1) {
for (i in seq_along(file.list)) {
track.list = .readDiaSessions(file = file.list[i],
ab.track = ab.track, frameRecord = frameRecord)
# add indexPerTrackll to track name
indexPerTrackll = seq_along(track.list)
names(track.list) = mapply(paste, names(track.list),
indexPerTrackll, sep = ".")
trackll[[i]] = track.list
names(trackll)[i] = file.name[i]
}
} else {
# parallel this block of code assign reading in using .readDiaSessions
# to each CPUs
# detect number of cores FUTURE: if more than one, automatic using
# multicore
if (cores > max.cores)
stop(paste("Number of cores specified is",
"greater than recomended maximum: "), max.cores)
cat("Initiated parallel execution on", cores, "cores\n")
# use outfile='' to display result on screen
cl <- parallel::makeCluster(spec = cores, type = "PSOCK", outfile = "")
# register cluster
parallel::setDefaultCluster(cl)
# pass environment variables to workers
parallel::clusterExport(cl, varlist = c(".readDiaSessions", "ab.track",
"frameRecord"), envir = environment())
# trackll=parallel::parLapply(cl,file.list,function(fname){
trackll = parallel::parLapply(cl, file.list, function(fname) {
track = .readDiaSessions(file = fname, ab.track = ab.track,
frameRecord = frameRecord)
# add indexPerTrackll to track name
indexPerTrackll = seq_along(track)
names(track) = mapply(paste, names(track), indexPerTrackll,
sep = ".")
return(track)
})
# stop cluster
cat("\nStopping clusters...\n")
parallel::stopCluster(cl)
names(trackll) = file.name
# names(track)=file.name
}
cat("\nProcess complete.\n")
return(trackll)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.