Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(BiocStyle)
## ---- eval = FALSE------------------------------------------------------------
# if (!require("BiocManager"))
# install.packages("BiocManager")
# BiocManager::install("spicyR")
## ----setup, message=FALSE-----------------------------------------------------
library(spicyR)
library(S4Vectors)
## -----------------------------------------------------------------------------
### Something that resembles cellProfiler data
set.seed(51773)
n = 10
cells <- data.frame(row.names = seq_len(n))
cells$ObjectNumber <- seq_len(n)
cells$ImageNumber <- rep(1:2,c(n/2,n/2))
cells$AreaShape_Center_X <- runif(n)
cells$AreaShape_Center_Y <- runif(n)
cells$AreaShape_round <- rexp(n)
cells$AreaShape_diameter <- rexp(n, 2)
cells$Intensity_Mean_CD8 <- rexp(n, 10)
cells$Intensity_Mean_CD4 <- rexp(n, 10)
## -----------------------------------------------------------------------------
cellExp <- SegmentedCells(cells, cellProfiler = TRUE)
cellExp
## -----------------------------------------------------------------------------
cellSum <- cellSummary(cellExp)
head(cellSum)
cellSummary(cellExp) <- cellSum
## -----------------------------------------------------------------------------
markers <- cellMarks(cellExp)
kM <- kmeans(markers,2)
cellType(cellExp) <- paste('cluster',kM$cluster, sep = '')
cellSum <- cellSummary(cellExp)
head(cellSum)
## -----------------------------------------------------------------------------
isletFile <- system.file("extdata","isletCells.txt.gz", package = "spicyR")
cells <- read.table(isletFile, header = TRUE)
## -----------------------------------------------------------------------------
cellExp <- SegmentedCells(cells, cellProfiler = TRUE)
cellExp
## -----------------------------------------------------------------------------
markers <- cellMarks(cellExp)
kM <- kmeans(markers,4)
cellType(cellExp) <- paste('cluster',kM$cluster, sep = '')
cellSum <- cellSummary(cellExp)
head(cellSum)
## ---- fig.width=5, fig.height= 6----------------------------------------------
plot(cellExp, imageID=1)
## -----------------------------------------------------------------------------
set.seed(51773)
n = 10
cells <- data.frame(row.names = seq_len(n))
cells$cellID <- seq_len(n)
cells$imageCellID <- rep(seq_len(n/2),2)
cells$imageID <- rep(1:2,c(n/2,n/2))
cells$x <- runif(n)
cells$y <- runif(n)
cells$shape_round <- rexp(n)
cells$shape_diameter <- rexp(n, 2)
cells$intensity_CD8 <- rexp(n, 10)
cells$intensity_CD4 <- rexp(n, 10)
cells$cellType <- paste('cluster',sample(1:2,n,replace = TRUE), sep = '_')
## -----------------------------------------------------------------------------
cellExp <- SegmentedCells(cells,
cellTypeString = 'cellType',
intensityString = 'intensity_',
morphologyString = 'shape_')
cellExp
## -----------------------------------------------------------------------------
morph <- cellMorph(cellExp)
head(morph)
## -----------------------------------------------------------------------------
phenoData <- DataFrame(imageID = c('1','2'),
age = c(21,81),
status = c('dead','alive'))
imagePheno(cellExp) <- phenoData
imagePheno(cellExp)
imagePheno(cellExp, expand = TRUE)
## -----------------------------------------------------------------------------
set.seed(51773)
n = 10
cells <- data.frame(row.names = seq_len(n))
cells$x <- runif(n)
cells$y <- runif(n)
cellExp <- SegmentedCells(cells)
cellExp
## -----------------------------------------------------------------------------
cellSum <- cellSummary(cellExp)
head(cellSum)
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.