test.hetero.test: Function to test the heterogeneity of set of probabilities

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

The function tests whether a set of p-values are heterogeneous.

Usage

1
test.hetero.test(p, weight, na.rm = FALSE)

Arguments

p

vector of p-values

weight

vector of weights (e.g. sample size of each study)

na.rm

TRUE if the missing values should be removed from the data, FALSE otherwise

Details

The p-values should be one-sided and computed from the same null hypothesis.

Value

Q

Q statistic

p.value

p-value of the heterogeneity test

Author(s)

Benjamin Haibe-Kains

References

Cochrane, W. G. (1954) "The combination of estimates from different experiments", Biometrics, 10, pages 101–129.

Whitlock, M. C. (2005) "Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach", J. Evol. Biol., 18, pages 1368–1373.

See Also

combine.test

Examples

1
2
3
4
5
6
7
p <- c(0.01, 0.13, 0.07, 0.2)
w <- c(100, 50, 200, 30)

#with equal weights
test.hetero.test(p=p)
#with p-values weighted by the sample size of the studies
test.hetero.test(p=p, weight=w)

Example output

Loading required package: survival
Loading required package: prodlim
$Q
[1] 1.243275

$p.value
[1] 0.7426449

$Q
[1] 94.16364

$p.value
[1] 2.792858e-20

survcomp documentation built on Nov. 8, 2020, 4:54 p.m.