Description Usage Arguments Value Note Author(s) References See Also Examples
Function to compute the concordance index for a risk prediction, i.e. the probability that, for a pair of randomly chosen comparable samples, the sample with the higher risk prediction will experience an event before the other sample or belongs to a higher binary class.
1 2 3 |
x |
a vector of risk predictions. |
surv.time |
a vector of event times. |
surv.event |
a vector of event occurence indicators. |
cl |
a vector of binary class indicators. |
weights |
weight of each sample. |
comppairs |
threshold for compairable patients. |
strat |
stratification indicator. |
alpha |
apha level to compute confidence interval. |
outx |
set to |
method |
can take the value |
alternative |
a character string specifying the alternative hypothesis, must be one of |
na.rm |
|
c.index |
concordance index estimate. |
se |
standard error of the estimate. |
lower |
lower bound for the confidence interval. |
upper |
upper bound for the confidence interval. |
p.value |
p-value for the statistical test if the estimate if different from 0.5. |
n |
number of samples used for the estimation. |
data |
list of data used to compute the index ( |
comppairs |
number of compairable pairs. |
The "direction" of the concordance index (< 0.5 or > 0.5) is the opposite than the rcorr.cens function in the Hmisc
package. So you can easily get the same results than rcorr.cens by changing the sign of x
.
Benjamin Haibe-Kains, Markus Schroeder
Harrel Jr, F. E. and Lee, K. L. and Mark, D. B. (1996) "Tutorial in biostatistics: multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing error", Statistics in Medicine, 15, pages 361–387.
Pencina, M. J. and D'Agostino, R. B. (2004) "Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation", Statistics in Medicine, 23, pages 2109–2123, 2004.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | set.seed(12345)
age <- rnorm(100, 50, 10)
sex <- sample(0:1, 100, replace=TRUE)
stime <- rexp(100)
cens <- runif(100,.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
strat <- sample(1:3, 100, replace=TRUE)
weight <- runif(100, min=0, max=1)
comppairs <- 10
cat("survival prediction:\n")
concordance.index(x=age, surv.time=stime, surv.event=sevent, strat=strat,
weights=weight, method="noether", comppairs=comppairs)
cat("binary class prediction:\n")
## is age predictive of sex?
concordance.index(x=age, cl=sex, strat=strat, method="noether")
|
Loading required package: survival
Loading required package: prodlim
survival prediction:
$c.index
[1] 0.5230613
$se
[1] 0.03343403
$lower
[1] 0.4575318
$upper
[1] 0.5885908
$p.value
[1] 0.4903484
$n
[1] 100
$data
$data$x
[1] 55.85529 57.09466 48.90697 45.46503 56.05887 31.82044 56.30099 47.23816
[9] 47.15840 40.80678 48.83752 68.17312 53.70628 55.20216 42.49468 58.16900
[17] 41.13642 46.68422 61.20713 52.98724 57.79622 64.55785 43.55672 34.46863
[25] 34.02290 68.05098 45.18353 56.20380 56.12123 48.37689 58.11873 71.96834
[33] 70.49190 66.32446 52.54271 54.91188 46.75913 33.37950 67.67734 50.25801
[41] 61.28511 26.19642 39.39734 59.37141 58.54452 64.60729 35.86901 55.67403
[49] 55.83188 36.93201 44.59614 69.47693 50.53590 53.51663 43.29023 52.77954
[57] 56.91171 58.23795 71.45065 26.53056 51.49592 36.57469 55.53303 65.89963
[65] 44.13120 31.67623 58.88139 65.93488 55.16855 37.04328 50.54616 42.15351
[73] 39.50647 73.30512 64.02705 59.42601 58.26258 41.88460 54.76248 60.21258
[81] 56.45383 60.43144 46.95631 74.77111 59.71221 68.67099 56.72042 46.92047
[89] 55.36524 58.24870 40.36099 41.44917 68.86947 46.08181 40.19367 56.87332
[97] 44.94956 71.57720 44.00202 43.05453
$data$surv.time
[1] 0.637853355 0.197314564 0.416581293 0.306881320 0.154827937 0.356571066
[7] 1.096221586 1.406930427 1.064566905 0.847219292 0.938433472 0.365299973
[13] 0.723795729 0.216887802 0.238225399 0.890783290 0.969024341 0.011000799
[19] 1.663490611 1.397090765 0.473277677 0.349694525 0.896520485 0.459397995
[25] 1.094637862 0.356546675 0.253164558 0.590390556 0.030716643 0.369448074
[31] 0.244754504 0.440600901 0.170370805 0.150545259 1.384699555 0.574045110
[37] 0.996481281 1.559945725 0.861266141 0.434629776 0.176064291 0.142967952
[43] 0.060913060 0.569092280 0.430919448 0.992690456 0.924182842 0.613625630
[49] 0.920003573 0.356111097 0.568598574 0.130677740 0.022247792 0.116445919
[55] 1.007857130 0.984365617 1.003222533 0.821054509 0.010615575 0.684983060
[61] 1.678080778 0.853088171 0.192398773 1.657698993 0.164590429 1.164628168
[67] 0.083792265 0.433889239 1.360584810 1.896422504 0.481232862 0.540298133
[73] 0.077356379 1.245692946 0.778048342 0.762629318 1.734777190 0.678462227
[79] 1.249678811 0.687199211 0.187438627 0.247703603 0.980026351 0.862026664
[85] 0.134605087 1.576969599 0.075869365 0.525945421 0.618154488 1.404378374
[91] 0.366814601 0.966280999 1.165185511 0.519370650 1.293312739 1.066429030
[97] 0.645233040 0.009719983 0.392513916 0.177425891
$data$surv.event
[1] 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0
[38] 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1
[75] 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1
$comppairs
[1] 808.7589
binary class prediction:
$c.index
[1] 0.4337789
$se
[1] 0.0548467
$lower
[1] 0.3262813
$upper
[1] 0.5412764
$p.value
[1] 0.2272835
$n
[1] 100
$data
$data$x
[1] 55.85529 57.09466 48.90697 45.46503 56.05887 31.82044 56.30099 47.23816
[9] 47.15840 40.80678 48.83752 68.17312 53.70628 55.20216 42.49468 58.16900
[17] 41.13642 46.68422 61.20713 52.98724 57.79622 64.55785 43.55672 34.46863
[25] 34.02290 68.05098 45.18353 56.20380 56.12123 48.37689 58.11873 71.96834
[33] 70.49190 66.32446 52.54271 54.91188 46.75913 33.37950 67.67734 50.25801
[41] 61.28511 26.19642 39.39734 59.37141 58.54452 64.60729 35.86901 55.67403
[49] 55.83188 36.93201 44.59614 69.47693 50.53590 53.51663 43.29023 52.77954
[57] 56.91171 58.23795 71.45065 26.53056 51.49592 36.57469 55.53303 65.89963
[65] 44.13120 31.67623 58.88139 65.93488 55.16855 37.04328 50.54616 42.15351
[73] 39.50647 73.30512 64.02705 59.42601 58.26258 41.88460 54.76248 60.21258
[81] 56.45383 60.43144 46.95631 74.77111 59.71221 68.67099 56.72042 46.92047
[89] 55.36524 58.24870 40.36099 41.44917 68.86947 46.08181 40.19367 56.87332
[97] 44.94956 71.57720 44.00202 43.05453
$data$cl
[1] 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1
[38] 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1
[75] 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0
$comppairs
[1] 1646
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.