Nothing
#' A function for estimating surrogate variables by estimating empirical control probes
#'
#' This function is the implementation of the iteratively re-weighted least squares
#' approach for estimating surrogate variables. As a buy product, this function
#' produces estimates of the probability of being an empirical control. See the function
#' \code{\link{empirical.controls}} for a direct estimate of the empirical controls.
#'
#' @param dat The transformed data matrix with the variables in rows and samples in columns
#' @param mod The model matrix being used to fit the data
#' @param mod0 The null model being compared when fitting the data
#' @param n.sv The number of surogate variables to estimate
#' @param B The number of iterations of the irwsva algorithm to perform
#'
#' @return sv The estimated surrogate variables, one in each column
#' @return pprob.gam: A vector of the posterior probabilities each gene is affected by heterogeneity
#' @return pprob.b A vector of the posterior probabilities each gene is affected by mod
#' @return n.sv The number of significant surrogate variables
#'
#' @examples
#' library(bladderbatch)
#' data(bladderdata)
#' dat <- bladderEset[1:5000,]
#'
#' pheno = pData(dat)
#' edata = exprs(dat)
#' mod = model.matrix(~as.factor(cancer), data=pheno)
#'
#' n.sv = num.sv(edata,mod,method="leek")
#' res <- irwsva.build(edata, mod, mod0 = NULL,n.sv,B=5)
#'
#' @export
#'
irwsva.build <- function(dat, mod, mod0 = NULL,n.sv,B=5) {
n <- ncol(dat)
m <- nrow(dat)
if(is.null(mod0)){mod0 <- mod[,1]}
Id <- diag(n)
resid <- dat %*% (Id - mod %*% solve(t(mod) %*% mod) %*% t(mod))
uu <- eigen(t(resid)%*%resid)
vv <- uu$vectors
ndf <- n - dim(mod)[2]
pprob <- rep(1,m)
one <- rep(1,n)
Id <- diag(n)
df1 <- dim(mod)[2] + n.sv
df0 <- dim(mod0)[2] + n.sv
rm(resid)
cat(paste("Iteration (out of", B,"):"))
for(i in 1:B){
mod.b <- cbind(mod,uu$vectors[,1:n.sv])
mod0.b <- cbind(mod0,uu$vectors[,1:n.sv])
ptmp <- f.pvalue(dat,mod.b,mod0.b)
pprob.b <- (1-edge.lfdr(ptmp))
mod.gam <- cbind(mod0,uu$vectors[,1:n.sv])
mod0.gam <- cbind(mod0)
ptmp <- f.pvalue(dat,mod.gam,mod0.gam)
pprob.gam <- (1-edge.lfdr(ptmp))
pprob <- pprob.gam*(1-pprob.b)
dats <- dat*pprob
dats <- dats - rowMeans(dats)
uu <- eigen(t(dats)%*%dats)
cat(paste(i," "))
}
sv = svd(dats)$v[,1:n.sv, drop=FALSE]
retval <- list(sv=sv,pprob.gam = pprob.gam, pprob.b=pprob.b,n.sv=n.sv)
return(retval)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.