Description Usage Arguments Details Value Author(s) References See Also Examples
Computes the \tilde{T}^2 statistics and/or the MB-statistics of differential expression for longitudinal replicated developmental microarray time course data by multivariate empirical Bayes shrinkage of gene-specific sample variance-covariance matrices towards a common matrix.
1 2 3 4 5 |
object |
Required. An object of class |
method |
a character string, |
type |
a character string, indicating whether possible outliers should be down-weighted. |
times |
Required. A positive integer giving the number of time points. |
reps |
Required. A numeric vector or matrix corresponding to the sample sizes for all genes across different biological conditions, when biological conditions are sorted in ascending order. If a matrix, rows represent genes while columns represent biological conditions. |
prior.df |
an optional positive value giving the degrees of moderation. |
prior.COV |
an optional numeric matrix giving the common covariance matrix to which the gene-specific sample covariances are smoothed toward. |
prior.eta |
an optional numeric value giving the scale parameter for the covariance matrix for the expected time course profile. |
condition.grp |
a numeric or character vector with length equals to the number of arrays,
assigning the biological condition group of each array. Required if
|
rep.grp |
an optional numeric or character vector with length equals to the number of arrays, assigning the replicate group of each array. |
time.grp |
an optional numeric vector with length equals to the number of arrays, assigning the time point group of each array. |
one.sample |
Is it a one-sample problem? Only specify this argument when |
ref |
an optional numeric value or character specifying the name
of reference biological condition. The default uses the
first element of |
p |
a numeric value between 0 and 1, assumed proportion of genes which are differentially expressed. |
out.t |
logical. Should the moderated multivariate t-statistics be outputed? The default is
|
tuning |
the tuning constant for the Huber weight function with a default 1.345. |
HotellingT2.only |
logical. Should only the HotellingT2 statistics be outputed? This should be
set as |
This function implements the multivariate empirical Bayes statistics
described in Tai and Speed (2004), to rank genes in the order of
interest from longitudinal replicated developmental microarray time course
experiments. It calls one of the following functions,
depending on which method
is used: mb.1D
,
mb.paired
, and mb.2D
.
The arguments condition.grp
, rep.grp
, and
time.grp
, if specified, should have lengths equal to the number
of arrays. The i_th elements of these three arguments should
correspond to the biological condition, replicate, and time for the i_th column (array) in the
expression value matrix of the input object, respectively.
The default assumes the columns of M
are in the ascending order of condition.grp
first,
and then rep.grp
, and finally time.grp
.
Arguments one.sample
and ref
are for method=paired
only.
When type=robust
, the numerator of the \tilde{T}^2 statistic is calculated using
the weighted average time course vector(s), where the weight at each data point
is determined using Huber's weight function with the default tuning constant 1.345.
Warning: When there are only 2 replicates within conditions,
type="robust"
produces the same rankings as type="none"
since there is no consensus on gene expression values.
Check the output weights for these outliers.
Object of MArrayTC
.
Yu Chuan Tai yuchuan@stat.berkeley.edu
Yu Chuan Tai and Terence P. Speed (2006). A multivariate empirical Bayes statistic for replicated microarray time course data. Annals of Statistics 34(5):2387-2412.
Yu Chuan Tai and Terence P. Speed (2005). Statistical analysis of microarray time course data. In: DNA Microarrays, U. Nuber (ed.), BIOS Scientific Publishers Limited, Taylor & Francis, 4 Park Square, Milton Park, Abingdon OX14 4RN, Chapter 20.
P. J. Huber (2004). Robust Statistics. Wiley series in probability and mathematical statistics.
timecourse Vignette.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | data(fruitfly)
colnames(fruitfly) ## check if arrays are arranged in the default order
gnames <- rownames(fruitfly)
assay <- rep(c("A", "B", "C"), each = 12)
time.grp <- rep(c(1:12), 3)
size <- rep(3, nrow(fruitfly))
out1 <- mb.long(fruitfly, times=12, reps=size, rep.grp = assay, time.grp = time.grp)
summary(out1)
plotProfile(out1, type="b", gnames=gnames, legloc=c(2,15), pch=c("A","B","C"), xlab="Hour")
## Simulate gene expression data
## Note: this simulation is for demonstration purpose only,
## and does not necessarily reflect the real
## features of longitudinal time course data
## one biological condition, 5 time points, 3 replicates
## 500 genes, 10 genes change over time
SS <- matrix(c( 0.01, -0.0008, -0.003, 0.007, 0.002,
-0.0008, 0.02, 0.002, -0.0004, -0.001,
-0.003, 0.002, 0.03, -0.0054, -0.009,
0.007, -0.0004, -0.00538, 0.02, 0.0008,
0.002, -0.001, -0.009, 0.0008, 0.07), ncol=5)
sim.Sigma <- function()
{
S <- matrix(rep(0,25),ncol=5)
x <- mvrnorm(n=10, mu=rep(0,5), Sigma=10*SS)
for(i in 1:10)
S <- S+crossprod(t(x[i,]))
solve(S)
}
sim.data1 <- function(x, indx=1)
{
mu <- rep(runif(1,8,x[1]),5)
if(indx==1) res <- as.numeric(t(mvrnorm(n=3, mu=mu+rnorm(5,sd=4), Sigma=sim.Sigma())))
if(indx==0) res <- as.numeric(t(mvrnorm(n=3, mu=mu, Sigma=sim.Sigma())))
res
}
M1 <- matrix(rep(14,500*15), ncol=15)
M1[1:10,] <- t(apply(M1[1:10,],1,sim.data1))
M1[11:500,] <- t(apply(M1[11:500,],1,sim.data1, 0))
## Which genes are nonconstant?
MB.1D1 <- mb.long(M1, times=5, reps=rep(3, 500))
MB.1D1$percent # check the percent of moderation
plotProfile(MB.1D1,type="b") # plots the no. 1 gene
plotProfile(MB.1D1,type="b",ranking=10) # plots the no. 10 gene
genenames <- as.character(1:500)
plotProfile(MB.1D1, type="b", gid="8", gnames=genenames) #plots the gene with ID "8"
##
MB.1D1.r <- mb.long(M1, type="r", times=5, reps=rep(3, 500))
plotProfile(MB.1D1.r,type="b",gnames=genenames)
plotProfile(MB.1D1.r,type="b", gid="1", gnames=genenames) #plots the gene with ID "1"
## assign the following labellings to columns of M1
## which is actually the same as the default
## Not Run
trt <- rep("wildtype", 15)
assay <- rep(c("A","B","C"), rep(5,3))
time.grp <- rep(c(0, 1, 3, 4, 6), 3)
## MB.1D2 should give the same results as MB.1D1
#MB.1D2 <- mb.long(M1, times=5, reps=rep(3, 500), condition.grp = trt, rep.grp = assay,
#time.grp=time.grp)
## suppose now the replicates are in this order instead
assay <- rep(c("A","C","B"), rep(5,3))
## then
MB.1D3 <- mb.long(M1, times=5, reps=rep(3, 500), condition.grp = trt, rep.grp = assay, time.grp=time.grp)
MB.1D3$rep.group #check the replicate and time group
MB.1D3$time.group
## Now let's simulate another dataset with two biological conditions
## 500 genes also, 10 of them have different expected time course profiles
## between these two biological conditions
## 3 replicates, 5 time points for each condition
sim.data2 <- function(x, indx=1)
{
mu <- rep(runif(1,8,x[1]),5)
if(indx==1)
res <- c(as.numeric(t(mvrnorm(n=3, mu=mu+rnorm(5,sd=5), Sigma=sim.Sigma()))),
as.numeric(t(mvrnorm(n=3, mu=mu+rnorm(5,sd=3.2), Sigma=sim.Sigma()))))
if(indx==0) res <- as.numeric(t(mvrnorm(n=6, mu=mu+rnorm(5,sd=3), Sigma=sim.Sigma())))
res
}
M2 <- matrix(rep(14,500*30), ncol=30)
M2[1:10,] <- t(apply(M2[1:10,],1,sim.data2))
M2[11:500,] <- t(apply(M2[11:500,],1,sim.data2, 0))
## assume it is a paired two-sample problem
trt <- rep(c("wt","mt"),each=15)
assay <- rep(rep(c("1.2.04","2.4.04","3.5.04"),each=5),2)
size <- matrix(3, nrow=500, ncol=2)
MB.paired <- mb.long(M2, method="paired", times=5, reps=size, condition.grp=trt, rep.grp=assay)
MB.paired$con.group # check the condition, replicate and time groups
MB.paired$rep.group
MB.paired$time.group
plotProfile(MB.paired, type="b")
genenames <- as.character(1:500)
plotProfile(MB.paired, gid="12", type="b", gnames=genenames) #plots the gene with ID "12"
### assume it is a unpaired two-sample problem
assay <- rep(c("1.2.04","2.4.04","3.5.04","5.21.04","7.17.04","8.4.04"),each=5)
MB.2D <- mb.long(M2, method="2", times=5, reps=size, condition.grp=trt, rep.grp=assay)
MB.2D$con.group # check the condition, replicate and time groups
MB.2D$rep.group
MB.2D$time.group
plotProfile(MB.2D,type="b", gnames=genenames) # plot the no. 1 gene
## Now let's simulate another dataset with two biological conditions
## 500 genes also, 10 of them have different expected time course profiles
## between these two biological conditions
## the first condition has 3 replicates, while the second condition has 4 replicates,
## 5 time points for each condition
sim.data3 <- function(x, indx=1)
{
mu <- rep(runif(1,8,x[1]),5)
if(indx==1)
res <- c(as.numeric(t(mvrnorm(n=3, mu=mu+rnorm(5,sd=5), Sigma=sim.Sigma()))),
as.numeric(t(mvrnorm(n=4, mu=mu+rnorm(5,sd=3.2), Sigma=sim.Sigma()))))
if(indx==0) res <- as.numeric(t(mvrnorm(n=7, mu=mu+rnorm(5,sd=3), Sigma=sim.Sigma())))
res
}
M3 <- matrix(rep(14,500*35), ncol=35)
M3[1:10,] <- t(apply(M3[1:10,],1,sim.data3))
M3[11:500,] <- t(apply(M3[11:500,],1,sim.data3, 0))
assay <- rep(c("1.2.04","2.4.04","3.5.04","5.21.04","7.17.04","9.10.04","12.1.04"),each=5)
trt <- c(rep(c("wildtype","mutant"),each=15),rep("mutant",5))
## Note that "mutant" < "wildtype", the sample sizes are (4, 3)
size <- matrix(c(4,3), nrow=500, ncol=2, byrow=TRUE)
MB.2D.2 <- mb.long(M3, method="2", times=5, reps=size, rep.grp=assay, condition.grp=trt)
MB.2D.2$con.group # check the condition, replicate and time groups
MB.2D.2$rep.group
MB.2D.2$time.group
plotProfile(MB.2D.2, type="b") # plot the no. 1 gene
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.