Nothing
#' Calculate Blomqvist coefficient
#'
#' @description
#' `blomqvist()` calculates the Blomqvist coefficient and is used in chapter 10 of "Applied Nonparametric Statistical Methods" (5th edition)
#'
#' @param x Numeric vector of same length as y
#' @param y Numeric vector of same length as x
#' @param alternative Type of alternative hypothesis (defaults to `two.sided`)
#' @param max.exact.cases Maximum number of cases allowed for exact calculations (defaults to `1000`)
#' @param nsims.mc Number of Monte Carlo simulations to be performed (defaults to `100000`)
#' @param seed Random number seed to be used for Monte Carlo simulations (defaults to `NULL`)
#' @param do.exact Boolean indicating whether or not to perform exact calculations (defaults to `TRUE`)
#' @param do.mc Boolean indicating whether or not to perform Monte Carlo calculations (defaults to `FALSE`)
#' @returns An ANSMstat object with the results from applying the function
#' @examples
#' # Example 10.9 from "Applied Nonparametric Statistical Methods" (5th edition)
#' blomqvist(ch10$q1, ch10$q2, alternative = "greater")
#'
#' # Exercise 10.7 from "Applied Nonparametric Statistical Methods" (5th edition)
#' blomqvist(ch10$ERA, ch10$SSS)
#'
#' @importFrom stats complete.cases median fisher.test
#' @export
blomqvist <-
function(x, y, alternative = c("two.sided", "less", "greater"),
max.exact.cases = 1000, nsims.mc = 100000, seed = NULL,
do.exact = TRUE, do.mc = FALSE) {
stopifnot(is.vector(x), is.numeric(x), is.vector(y), is.numeric(y),
length(x) == length(y),
is.numeric(max.exact.cases), length(max.exact.cases) == 1,
is.numeric(nsims.mc), length(nsims.mc) == 1,
is.numeric(seed) | is.null(seed),
is.logical(do.exact) == TRUE, is.logical(do.mc) == TRUE)
alternative <- match.arg(alternative)
#labels
varname1 <- deparse(substitute(x))
varname2 <- deparse(substitute(y))
varname3 <- NULL
#unused arguments
cont.corr <- NULL
CI.width <- NULL
do.asymp <- FALSE
do.CI <- FALSE
#default outputs
pval <- NULL
pval.stat <- NULL
pval.note <- NULL
pval.asymp <- NULL
pval.asymp.stat <- NULL
pval.asymp.note <- NULL
pval.exact <- NULL
pval.exact.stat <- NULL
pval.exact.note <- NULL
pval.mc <- NULL
pval.mc.stat <- NULL
pval.mc.note <- NULL
actualCIwidth.exact <- NULL
CI.exact.lower <- NULL
CI.exact.upper <- NULL
CI.exact.note <- NULL
CI.asymp.lower <- NULL
CI.asymp.upper <- NULL
CI.asymp.note <- NULL
CI.mc.lower <- NULL
CI.mc.upper <- NULL
CI.mc.note <- NULL
CI.sample.lower <- NULL
CI.sample.upper <- NULL
CI.sample.note <- NULL
stat.note <- NULL
#prepare
x <- x[complete.cases(x)] #remove missing cases
y <- y[complete.cases(y)] #remove missing cases
x <- round(x, -floor(log10(sqrt(.Machine$double.eps)))) #handle floating point issues
y <- round(y, -floor(log10(sqrt(.Machine$double.eps)))) #handle floating point issues
n <- length(x)
med.x <- median(x)
med.y <- median(y)
a <- sum(x > med.x & y > med.y)
b <- sum(x < med.x & y > med.y)
c <- sum(x > med.x & y < med.y)
d <- sum(x < med.x & y < med.y)
stat <- ((a * d) - (b * c)) / sqrt((a + b) * (c + d) * (a + c) * (b + d))
statlabel <- "Blomqvist coefficient"
#give mc output if exact not possible
if (do.exact && n > max.exact.cases){
do.mc <- TRUE
}
#exact p-value
if (do.exact && n <= max.exact.cases){
x.mat <- matrix(c(a, b, c, d), nrow = 2, ncol = 2)
pval.exact <- fisher.test(x.mat, alternative = alternative)$p.value
}
#Monte Carlo p-value
if(do.mc){
if (!is.null(seed)){set.seed(seed)}
pval.mc <- 0
for (i in 1:nsims.mc){
x.sample <- x[sample(n, n, replace = FALSE)]
a <- sum(x.sample > med.x & y > med.y)
b <- sum(x.sample < med.x & y > med.y)
c <- sum(x.sample > med.x & y < med.y)
d <- sum(x.sample < med.x & y < med.y)
cor.tmp <- ((a * d) - (b * c)) / sqrt((a + b) * (c + d) * (a + c) * (b + d))
if (alternative == "two.sided"){
if (abs(cor.tmp) >= abs(stat)){
pval.mc <- pval.mc + 1 / nsims.mc
}
}else if (alternative == "less"){
if (cor.tmp <= stat){
pval.mc <- pval.mc + 1 / nsims.mc
}
}else if (alternative == "greater"){
if (cor.tmp >= stat){
pval.mc <- pval.mc + 1 / nsims.mc
}
}
}
}
#check if message needed
if (!do.exact && !do.mc) {
stat.note <- paste("Neither exact nor Monte Carlo test requested")
}else if (do.exact && n > max.exact.cases) {
stat.note <- paste0("NOTE: Number of useful cases greater than current ",
"maximum allowed for exact calculations\nrequired for ",
"exact test (max.exact.cases = ",
sprintf("%1.0f", max.exact.cases), ") so Monte ",
"Carlo p-value given")
}
#create hypotheses
H0 <- paste0("H0: Blomqvist coefficient for ", varname1, " and ",
varname2, " is 0")
if (alternative == "two.sided"){
H0 <- paste0(H0, "\nH1: Blomqvist coefficient for ", varname1, " and ",
varname2, " is not 0")
}else if(alternative == "greater"){
H0 <- paste0(H0, "\nH1: Blomqvist coefficient for ", varname1, " and ",
varname2, " is greater than 0")
}else{
H0 <- paste0(H0, "\nH1: Blomqvist coefficient for ", varname1, " and ",
varname2, " is less than 0")
}
H0 <- paste0(H0, "\n")
#return
result <- list(title = "Blomqvist coefficient", varname1 = varname1,
varname2 = varname2, varname3 = varname3, stat = stat,
statlabel = statlabel, H0 = H0,
alternative = alternative, cont.corr = cont.corr, pval = pval,
pval.stat = pval.stat, pval.note = pval.note,
pval.exact = pval.exact, pval.exact.stat = pval.exact.stat,
pval.exact.note = pval.exact.note, targetCIwidth = CI.width,
actualCIwidth.exact = actualCIwidth.exact,
CI.exact.lower = CI.exact.lower,
CI.exact.upper = CI.exact.upper, CI.exact.note = CI.exact.note,
pval.asymp = pval.asymp, pval.asymp.stat = pval.asymp.stat,
pval.asymp.note = pval.asymp.note,
CI.asymp.lower = CI.asymp.lower,
CI.asymp.upper = CI.asymp.upper, CI.asymp.note = CI.asymp.note,
pval.mc = pval.mc, pval.mc.stat = pval.mc.stat,
nsims.mc = nsims.mc, pval.mc.note = pval.mc.note,
CI.mc.lower = CI.mc.lower, CI.mc.upper = CI.mc.upper,
CI.mc.note = CI.mc.note, CI.sample.lower = CI.sample.lower,
CI.sample.upper = CI.sample.upper, CI.sample.note = CI.sample.note,
stat.note = stat.note)
class(result) <- "ANSMstat"
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.