R/jonckheere.terpstra.R

Defines functions jonckheere.terpstra

Documented in jonckheere.terpstra

#' Perform Jonckheere-Terpstra test
#'
#' @description
#' `jonckheere.terpstra()` performs the Jonckheere-Terpstra test and is used in chapters 7, 8 and 12 of "Applied Nonparametric Statistical Methods" (5th edition)
#'
#' @param x Numeric vector or factor of same length as g
#' @param g Factor of same length as x
#' @param alternative Type of alternative hypothesis (defaults to `c("less","greater")`)
#' @param max.exact.cases Maximum number of cases allowed for exact calculations (defaults to `15`)
#' @param nsims.mc Number of Monte Carlo simulations to be performed (defaults to `10000`)
#' @param seed Random number seed to be used for Monte Carlo simulations (defaults to `NULL`)
#' @param do.asymp Boolean indicating whether or not to perform asymptotic calculations (defaults to `FALSE`)
#' @param do.exact Boolean indicating whether or not to perform exact calculations (defaults to `TRUE`)
#' @param do.mc Boolean indicating whether or not to perform Monte Carlo calculations (defaults to `FALSE`)
#' @param do.asymp.ties.adjust Boolean indicating whether or not to use adjustment for ties in data (defaults to `TRUE`)
#' @returns An ANSMtest object with the results from applying the function
#' @examples
#' # Example 7.3 from "Applied Nonparametric Statistical Methods" (5th edition)
#' jonckheere.terpstra(ch7$dementia.age, ch7$features, alternative = "greater",
#'   do.exact = FALSE, do.asymp = TRUE, do.asymp.ties.adjust = FALSE)
#'
#' # Exercise 12.6 from "Applied Nonparametric Statistical Methods" (5th edition)
#' jonckheere.terpstra(ch12$ethnic.group, ch12$diabetes.status, do.exact = FALSE, do.asymp = TRUE)
#'
#' @importFrom stats complete.cases
#' @importFrom utils combn
#' @export
jonckheere.terpstra <-
  function(x, g, alternative = c("less", "greater"),
           max.exact.cases = 15, nsims.mc = 10000, seed = NULL,
           do.asymp = FALSE, do.exact = TRUE, do.mc = FALSE,
           do.asymp.ties.adjust = TRUE) {
    stopifnot((is.vector(x) && is.numeric(x)) | is.factor(x), is.factor(g),
              length(x) == length(g),
              length(x[complete.cases(x)]) == length(g[complete.cases(g)]),
              is.numeric(max.exact.cases), length(max.exact.cases) == 1,
              is.numeric(nsims.mc), length(nsims.mc) == 1,
              is.numeric(seed) | is.null(seed),
              length(seed) == 1 | is.null(seed),
              is.logical(do.asymp) == TRUE, is.logical(do.exact) == TRUE,
              is.logical(do.mc), is.logical(do.asymp.ties.adjust))
    alternative <- match.arg(alternative)

    #labels
    varname1 <- deparse(substitute(x))
    varname2 <- deparse(substitute(g))

    #unused arguments
    cont.corr <- NULL
    CI.width <- NULL
    do.CI <- FALSE

    #default outputs
    pval <- NULL
    pval.stat <- NULL
    pval.note <- NULL
    pval.asymp <- NULL
    pval.asymp.stat <- NULL
    pval.asymp.note <- NULL
    pval.exact <- NULL
    pval.exact.stat <- NULL
    pval.exact.note <- NULL
    pval.mc <- NULL
    pval.mc.stat <- NULL
    pval.mc.note <- NULL
    actualCIwidth.exact <- NULL
    CI.exact.lower <- NULL
    CI.exact.upper <- NULL
    CI.exact.note <- NULL
    CI.asymp.lower <- NULL
    CI.asymp.upper <- NULL
    CI.asymp.note <- NULL
    CI.mc.lower <- NULL
    CI.mc.upper <- NULL
    CI.mc.note <- NULL
    test.note <- NULL

    #prepare
    x <- x[complete.cases(x)] #remove missing cases
    g <- g[complete.cases(g)] #remove missing cases
    n <- length(x)
    if (is.factor(x)){
      x <- as.numeric(x)
    }else{
      x <- round(x, -floor(log10(sqrt(.Machine$double.eps)))) #handle floating point issues
    }
    table_g <- table(g)

    #give MC output if exact not possible
    if (do.exact && n > max.exact.cases){
      do.mc <- TRUE
    }

    #check for ties
    tiesexist = !all(rank(x) == round(rank(x),0)) # TRUE if ties exist

    #calculate test statistic
    U <- 0
    for (i in 1:(nlevels(g) - 1)){
      for (j in (i + 1):nlevels(g)){
        x1 <- x[g == levels(g)[i]]
        x2 <- x[g == levels(g)[j]]
        sum(sapply(x1, function(z) sum(x2 > z) + 0.5 * sum(x2 == z)))
        U <- U + sum(sapply(x1, function(z) sum(x2 > z) + 0.5 * sum(x2 == z)))
      }
    }

    #exact p-value
    if (do.exact && n <= max.exact.cases){
      combins <- NULL
      for (ig in 1:(nlevels(g) - 1)){
        if (ig == 1){
          combins <- t(combn(n, table_g[ig]))
        }else{
          combins2 <- NULL
          for (i in 1:dim(combins)[1]){
            combins2 <- rbind(combins2,
                              cbind(matrix(rep(combins[i,],
                                               choose(n - dim(combins)[2],
                                                      table_g[ig])),
                                           ncol = dim(combins)[2],
                                           byrow = TRUE),
                                    t(combn(setdiff(seq(1:n), combins[i,]),
                                            table_g[ig]))))
          }
          combins <- combins2
        }
      }
      combins <- matrix(combins, ncol = dim(combins)[2])
      last.group <- apply(combins, 1, function(z) setdiff(1:n, z))
      last.group <- matrix(t(last.group), ncol = n - dim(combins)[2])
      combins <- cbind(combins, last.group)
      combins <- data.frame(matrix(x[combins], ncol=dim(combins)[2]))
      #calculate U for each combination
      combins.U <- rep(0, dim(combins)[1])
      for (i in 1:(nlevels(g) - 1)){
        for (j in (i + 1):nlevels(g)){
          x1 <- combins[,g == levels(g)[i]]
          if (table_g[i] == 1){
            x1 <- matrix(x1, ncol = 1)
          }
          x2 <- combins[,g == levels(g)[j]]
          if (table_g[j] == 1){
            x2 <- matrix(x2, ncol = 1)
          }
          for (k in 1:dim(x1)[2]){
            combins.U <- combins.U +
              rowSums(x2 > x1[, k]) + 0.5 * rowSums(x2 == x1[, k])
          }
        }
      }
      if (alternative == "less"){
        pval.exact <- sum(combins.U >= U) / dim(combins)[1]
      }else if (alternative == "greater"){
        pval.exact <- sum(combins.U <= U) / dim(combins)[1]
      }
      pval.exact.stat <- U
    }

    #Monte Carlo p-value
    if (do.mc){
      if (!is.null(seed)){set.seed(seed)}
      U.sim <- NULL
      for (i in 1:nsims.mc){
        x.sim <- sample(x, n, replace = FALSE)
        Ui <- 0
        for (i in 1:(nlevels(g) - 1)){
          for (j in (i + 1):nlevels(g)){
            x1 <- x.sim[g == levels(g)[i]]
            x2 <- x.sim[g == levels(g)[j]]
            Ui <- Ui +
              sum(sapply(x1, function(z) sum(x2 > z) + 0.5 * sum(x2 == z)))
          }
        }
        U.sim <- c(U.sim, Ui)
      }
      if (alternative == "less"){
        pval.mc <- sum(U.sim >= U) / nsims.mc
      }else if (alternative == "greater"){
        pval.mc <- sum(U.sim <= U) / nsims.mc
      }
      pval.mc.stat <- U
    }

    #asymptotic p-value
    if (do.asymp){
      U.Exp <- (n ** 2 - sum(table_g ** 2)) / 4
      if (do.asymp.ties.adjust){
        table_gx <- table(g, x)
        rowSums.gx <- rowSums(table_gx)
        colSums.gx <- colSums(table_gx)
        U1 <- n * (n - 1) * (2 * n + 5) -
          sum(rowSums.gx * (rowSums.gx - 1) * (2 * rowSums.gx + 5)) -
          sum(colSums.gx * (colSums.gx - 1) * (2 * colSums.gx + 5))
        U2 <- sum(rowSums.gx * (rowSums.gx - 1) * (rowSums.gx - 2)) *
          sum(colSums.gx * (colSums.gx - 1) * (colSums.gx - 2))
        U3 <- sum(rowSums.gx * (rowSums.gx - 1)) *
          sum(colSums.gx * (colSums.gx - 1))
        U.Var <- U1 / 72 + U2 / (36 * n * (n - 1) * (n - 2)) + U3 / (8 * n * (n - 1))
      }else{
        U.Var <- (n ** 2 * (2 * n + 3) - sum(table_g ** 2 * (2 * table_g + 3))) / 72
      }
      if (alternative == "less"){
        pval.asymp.stat <- (U.Exp - U) / sqrt(U.Var)
      }else if (alternative == "greater"){
        pval.asymp.stat <- (U - U.Exp) / sqrt(U.Var)
      }
      pval.asymp <- pnorm(pval.asymp.stat)
    }

    #check if message needed
    if (!do.asymp && !do.exact) {
      test.note <- paste("Neither exact nor asymptotic test requested")
    }else if (do.exact && n > max.exact.cases) {
      test.note <- paste0("NOTE: Number of useful cases greater than current ",
                          "maximum allowed for exact\ncalculations required ",
                          "for exact test (max.exact.cases = ",
                          sprintf("%1.0f", max.exact.cases), ")\nso Monte ",
                          "Carlo p-value given")
    }
    if (do.asymp & tiesexist){
      if (!is.null(test.note)){
        test.note <- paste0(test.note, "\n")
      }
      if (do.asymp.ties.adjust){
        test.note <- paste0(test.note, "NOTE: Asymptotic p-value adjusted ",
                            "for ties in data")
      }else{
        test.note <- paste0(test.note, "NOTE: Asymptotic p-value not adjusted ",
                            "for ties in data")
      }
    }

    #define hypotheses
    if (alternative == "less"){
      H0 <- paste0("H0: samples are from the same population\n",
                   "H1: samples differ with median of '", levels(g)[1], "'\n")
      for (i in 2:nlevels(g)){
        H0 <- paste0(H0, "    < median of '", levels(g)[i], "'\n")
      }
    }else if (alternative == "greater"){
      H0 <- paste0("H0: samples are from the same population\n",
                   "H1: samples differ with median of '", levels(g)[1], "'\n")
      for (i in 2:nlevels(g)){
        H0 <- paste0(H0, "    > median of '", levels(g)[i], "'\n")
      }
    }

    #return
    result <- list(title = "Jonckheere-Terpstra test", varname1 = varname1,
                   varname2 = varname2, H0 = H0,
                   alternative = alternative, cont.corr = cont.corr, pval = pval,
                   pval.stat = pval.stat, pval.note = pval.note,
                   pval.exact = pval.exact, pval.exact.stat = pval.exact.stat,
                   pval.exact.note = pval.exact.note, targetCIwidth = CI.width,
                   actualCIwidth.exact = actualCIwidth.exact,
                   CI.exact.lower = CI.exact.lower,
                   CI.exact.upper = CI.exact.upper, CI.exact.note = CI.exact.note,
                   pval.asymp = pval.asymp, pval.asymp.stat = pval.asymp.stat,
                   pval.asymp.note = pval.asymp.note,
                   CI.asymp.lower = CI.asymp.lower,
                   CI.asymp.upper = CI.asymp.upper, CI.asymp.note = CI.asymp.note,
                   pval.mc = pval.mc, pval.mc.stat = pval.mc.stat,
                   nsims.mc = nsims.mc, pval.mc.note = pval.mc.note,
                   CI.mc.lower = CI.mc.lower, CI.mc.upper = CI.mc.upper,
                   CI.mc.note = CI.mc.note,
                   test.note = test.note)
    class(result) <- "ANSMtest"
    return(result)
  }

Try the ANSM5 package in your browser

Any scripts or data that you put into this service are public.

ANSM5 documentation built on Sept. 11, 2024, 6:45 p.m.