Posthoc_planner: Post Hoc Planner for FWER and Test Recommendation v1.6

View source: R/posthoc_planner.R

Posthoc_plannerR Documentation

Post Hoc Planner for FWER and Test Recommendation v1.6

Description

One-shot planner for factor or cell comparisons, reporting m, FWER, suggested adjustments (Bonferroni/Sidak) and a post hoc recommendation (Holm, Tukey, Duncan, Gabriel, Scheffe, SNK, etc.) before testing.

Usage

Posthoc_planner(
  model,
  compare = NULL,
  alpha = 0.05,
  scope = c("factor", "cells"),
  equal_var = TRUE,
  unequal_n = FALSE,
  independence = TRUE,
  liberal_ok = FALSE,
  orientation = c("rows", "cols"),
  digits = 4,
  percent_digits = 1,
  observed_cells = TRUE
)

Arguments

model

aov or lm object (complete model). Data are reconstructed with model.frame().

compare

Character with the name(s) of the factor(s) to compare: - One name: main effect. - Several names: if scope="cells" compares A:B:... cells; if scope="factor", reports each factor. If omitted, uses all factors when scope="factor", or the first factor when scope="cells".

alpha

Overall significance level (FWER target), default 0.05.

scope

"factor" compares each factor separately; "cells" compares interaction cells.

equal_var

Logical; assume homoscedasticity (default TRUE).

unequal_n

Logical; expect moderate imbalance of group sizes (default FALSE).

independence

Logical; if TRUE reports FWER "under independence" (default TRUE).

liberal_ok

Logical; allows more liberal suggestions (LSD/Duncan/SNK) (default FALSE).

orientation

"rows" (metrics as rows, default) or "cols".

digits

Decimal places for numeric output, default 4.

percent_digits

Decimal places for percentages, default 1.

observed_cells

Logical; in scope="cells", count only observed cells (drop NA). Default TRUE.

Value

data.frame. - orientation="rows": first column "Metric", rest columns are units (factor/cells). - orientation="cols": one row per unit, metrics as columns. Includes: g levels, m comparisons, global alpha, Bonferroni/Sidak alphas, FWERs (under independence), "Suggested p-value adjustment" and "Post hoc suggestion".

Examples

# example code



Analitica documentation built on Nov. 5, 2025, 5:13 p.m.