View source: R/AutoScore_Ordinal.R
AutoScore_rank_Ordinal | R Documentation |
AutoScore STEP (i) for ordinal outcomes: Generate variable ranking list by machine learning (AutoScore Module 1)
AutoScore_rank_Ordinal(train_set, ntree = 100)
train_set |
A processed |
ntree |
Number of trees in the random forest (Default: 100). |
The first step in the AutoScore framework is variable ranking. We use random forest (RF) for multiclass classification to identify the top-ranking predictors for subsequent score generation. This step corresponds to Module 1 in the AutoScore-Ordinal paper.
Returns a vector containing the list of variables and its ranking generated by machine learning (random forest)
Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32
Saffari SE, Ning Y, Feng X, Chakraborty B, Volovici V, Vaughan R, Ong ME, Liu N, AutoScore-Ordinal: An interpretable machine learning framework for generating scoring models for ordinal outcomes, arXiv:2202.08407
AutoScore_parsimony_Ordinal
,
AutoScore_weighting_Ordinal
,
AutoScore_fine_tuning_Ordinal
,
AutoScore_testing_Ordinal
.
## Not run: # see AutoScore-Ordinal Guidebook for the whole 5-step workflow data("sample_data_ordinal") # Output is named `label` ranking <- AutoScore_rank_ordinal(sample_data_ordinal, ntree = 50) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.