View source: R/AutoScore_Survival.R
AutoScore_weighting_Survival | R Documentation |
AutoScore STEP(iii) for survival outcomes: Generate the initial score with the final list of variables (Re-run AutoScore Modules 2+3)
AutoScore_weighting_Survival( train_set, validation_set, final_variables, max_score = 100, categorize = "quantile", max_cluster = 5, quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1), time_point = c(1, 3, 7, 14, 30, 60, 90) )
train_set |
A processed |
validation_set |
A processed |
final_variables |
A vector containing the list of selected variables, selected from Step(ii) |
max_score |
Maximum total score (Default: 100). |
categorize |
Methods for categorize continuous variables. Options include "quantile" or "kmeans" (Default: "quantile"). |
max_cluster |
The max number of cluster (Default: 5). Available if |
quantiles |
Predefined quantiles to convert continuous variables to categorical ones. (Default: c(0, 0.05, 0.2, 0.8, 0.95, 1)) Available if |
time_point |
The time points to be evaluated using time-dependent AUC(t). |
Generated cut_vec
for downstream fine-tuning process STEP(iv) AutoScore_fine_tuning
.
Xie F, Ning Y, Yuan H, et al. AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data. J Biomed Inform. 2022;125:103959. doi:10.1016/j.jbi.2021.103959
AutoScore_rank_Survival
,
AutoScore_parsimony_Survival
,
AutoScore_fine_tuning_Survival
,
AutoScore_testing_Survival
.
## Not run: data("sample_data_survival") # out_split <- split_data(data = sample_data_survival, ratio = c(0.7, 0.1, 0.2)) train_set <- out_split$train_set validation_set <- out_split$validation_set ranking <- AutoScore_rank_Survival(train_set, ntree=5) num_var <- 6 final_variables <- names(ranking[1:num_var]) cut_vec <- AutoScore_weighting_Survival( train_set = train_set, validation_set = validation_set, final_variables = final_variables, max_score = 100, categorize = "quantile", quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1), time_point = c(1,3,7,14,30,60,90) ) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.