View source: R/AutoScore_Ordinal.R
AutoScore_weighting_Ordinal | R Documentation |
AutoScore STEP(iii) for ordinal outcomes: Generate the initial score with the final list of variables (Re-run AutoScore Modules 2+3)
AutoScore_weighting_Ordinal( train_set, validation_set, final_variables, link = "logit", max_score = 100, categorize = "quantile", quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1), max_cluster = 5, n_boot = 100 )
train_set |
A processed |
validation_set |
A processed |
final_variables |
A vector containing the list of selected variables,
selected from Step(ii) |
link |
The link function used to model ordinal outcomes. Default is
|
max_score |
Maximum total score (Default: 100). |
categorize |
Methods for categorize continuous variables. Options include "quantile" or "kmeans" (Default: "quantile"). |
quantiles |
Predefined quantiles to convert continuous variables to categorical ones. (Default: c(0, 0.05, 0.2, 0.8, 0.95, 1)) Available if |
max_cluster |
The max number of cluster (Default: 5). Available if |
n_boot |
Number of bootstrap cycles to compute 95% CI for performance metrics. |
Generated cut_vec
for downstream fine-tuning process STEP(iv)
AutoScore_fine_tuning_Ordinal
.
Saffari SE, Ning Y, Feng X, Chakraborty B, Volovici V, Vaughan R, Ong ME, Liu N, AutoScore-Ordinal: An interpretable machine learning framework for generating scoring models for ordinal outcomes, arXiv:2202.08407
AutoScore_rank_Ordinal
,
AutoScore_parsimony_Ordinal
,
AutoScore_fine_tuning_Ordinal
,
AutoScore_testing_Ordinal
.
## Not run: data("sample_data_ordinal") # Output is named `label` out_split <- split_data(data = sample_data_ordinal, ratio = c(0.7, 0.1, 0.2)) train_set <- out_split$train_set validation_set <- out_split$validation_set ranking <- AutoScore_rank_Ordinal(train_set, ntree=100) num_var <- 6 final_variables <- names(ranking[1:num_var]) cut_vec <- AutoScore_weighting_Ordinal( train_set = train_set, validation_set = validation_set, final_variables = final_variables, max_score = 100, categorize = "quantile", quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1) ) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.