View source: R/AutoScore_Survival.R
AutoScore_testing_Survival | R Documentation |
AutoScore STEP(v) for survival outcomes: Evaluate the final score with ROC analysis (AutoScore Module 6)
AutoScore_testing_Survival( test_set, final_variables, cut_vec, scoring_table, threshold = "best", with_label = TRUE, time_point = c(1, 3, 7, 14, 30, 60, 90) )
test_set |
A processed |
final_variables |
A vector containing the list of selected variables, selected from Step(ii) |
cut_vec |
Generated from STEP(iii)
|
scoring_table |
The final scoring table after fine-tuning, generated from STEP(iv) |
threshold |
Score threshold for the ROC analysis to generate sensitivity, specificity, etc. If set to "best", the optimal threshold will be calculated (Default:"best"). |
with_label |
Set to TRUE if there are labels('label_time' and 'label_status') in the test_set and performance will be evaluated accordingly (Default:TRUE). |
time_point |
The time points to be evaluated using time-dependent AUC(t). |
A data frame with predicted score and the outcome for downstream visualization.
Xie F, Ning Y, Yuan H, et al. AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data. J Biomed Inform. 2022;125:103959. doi:10.1016/j.jbi.2021.103959
AutoScore_rank_Survival
,
AutoScore_parsimony_Survival
,
AutoScore_weighting_Survival
,
AutoScore_fine_tuning_Survival
.
## Please see the guidebook or vignettes
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.