View source: R/AutoScore_Survival.R
AutoScore_rank_Survival | R Documentation |
AutoScore STEP (1) for survival outcomes: Generate variable ranking List by machine learning (Random Survival Forest) (AutoScore Module 1)
AutoScore_rank_Survival(train_set, ntree = 50)
train_set |
A processed |
ntree |
Number of trees in the random forest (Default: 100). |
The first step in the AutoScore framework is variable ranking. We use Random Survival Forest (RSF) for survival outcome to identify the top-ranking predictors for subsequent score generation. This step correspond to Module 1 in the AutoScore-Survival paper.
Returns a vector containing the list of variables and its ranking generated by machine learning (random forest)
Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival forests. The annals of applied statistics, 2(3), 841-860.
Xie F, Ning Y, Yuan H, et al. AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data. J Biomed Inform. 2022;125:103959. doi:10.1016/j.jbi.2021.103959
AutoScore_parsimony_Survival
,
AutoScore_weighting_Survival
,
AutoScore_fine_tuning_Survival
,
AutoScore_testing_Survival
.
## Not run: # see AutoScore-Survival Guidebook for the whole 5-step workflow data("sample_data_survival") # Output is named `label_time` and `label_status` ranking <- AutoScore_rank_Survival(sample_data_survival, ntree = 50) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.