compute_auc_val_ord | R Documentation |
Compute mean AUC based on validation set for plotting parsimony
compute_auc_val_ord( train_set_1, validation_set_1, variable_list, link, categorize, quantiles, max_cluster, max_score )
train_set_1 |
Processed training set |
validation_set_1 |
Processed validation set |
variable_list |
List of included variables |
link |
The link function used to model ordinal outcomes. Default is
|
categorize |
Methods for categorize continuous variables. Options include "quantile" or "kmeans" |
quantiles |
Predefined quantiles to convert continuous variables to categorical ones. Available if |
max_cluster |
The max number of cluster (Default: 5). Available if |
max_score |
Maximum total score |
A list of mAUC for parsimony plot
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.