AutoScore_weighting | R Documentation |
AutoScore STEP(iii): Generate the initial score with the final list of variables (Re-run AutoScore Modules 2+3)
AutoScore_weighting( train_set, validation_set, final_variables, max_score = 100, categorize = "quantile", max_cluster = 5, quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1), metrics_ci = FALSE )
train_set |
A processed |
validation_set |
A processed |
final_variables |
A vector containing the list of selected variables, selected from Step(ii) |
max_score |
Maximum total score (Default: 100). |
categorize |
Methods for categorize continuous variables. Options include "quantile" or "kmeans" (Default: "quantile"). |
max_cluster |
The max number of cluster (Default: 5). Available if |
quantiles |
Predefined quantiles to convert continuous variables to categorical ones. (Default: c(0, 0.05, 0.2, 0.8, 0.95, 1)) Available if |
metrics_ci |
whether to calculate confidence interval for the metrics of sensitivity, specificity, etc. |
Generated cut_vec
for downstream fine-tuning process STEP(iv) AutoScore_fine_tuning
.
Xie F, Chakraborty B, Ong MEH, Goldstein BA, Liu N. AutoScore: A Machine Learning-Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records. JMIR Medical Informatics 2020;8(10):e21798
AutoScore_rank
, AutoScore_parsimony
, AutoScore_fine_tuning
, AutoScore_testing
, Run vignette("Guide_book", package = "AutoScore")
to see the guidebook or vignette.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.