View source: R/roll_your_own.R
roll_your_own | R Documentation |
This function allows for computing custom network statistics for weighted adjacency matrices (partial correlations). The statistics are computed for each of the sampled matrices, resulting in a distribution.
roll_your_own(
object,
FUN,
iter = NULL,
select = FALSE,
cred = 0.95,
progress = TRUE,
...
)
object |
An object of class |
FUN |
A custom function for computing the statistic. The first argument must be a partial correlation matrix. |
iter |
Number of iterations (posterior samples; defaults to the number in the object). |
select |
Logical. Should the graph be selected ? The default is currently |
cred |
Numeric. Credible interval between 0 and 1 (default is 0.95) that is used for selecting the graph. |
progress |
Logical. Should a progress bar be included (defaults to |
... |
Arguments passed to the function. |
The user has complete control of this function. Hence, care must be taken as to what FUN
returns and in what format. The function should return a single number (one for the entire GGM)
or a vector (one for each node). This ensures that the print and plot.roll_your_own
will work.
When select = TRUE
, the graph is selected and then the network statistics are computed based on
the weigthed adjacency matrix. This is accomplished internally by multiplying each of the sampled
partial correlation matrices by the adjacency matrix.
An object defined by FUN
.
####################################
###### example 1: assortment #######
####################################
# assortment
library(assortnet)
Y <- BGGM::bfi[,1:10]
membership <- c(rep("a", 5), rep("c", 5))
# fit model
fit <- estimate(Y = Y, iter = 250,
progress = FALSE)
# membership
membership <- c(rep("a", 5), rep("c", 5))
# define function
f <- function(x,...){
assortment.discrete(x, ...)$r
}
net_stat <- roll_your_own(object = fit,
FUN = f,
types = membership,
weighted = TRUE,
SE = FALSE, M = 1,
progress = FALSE)
# print
net_stat
############################################
###### example 2: expected influence #######
############################################
# expected influence from this package
library(networktools)
# data
Y <- depression
# fit model
fit <- estimate(Y = Y, iter = 250)
# define function
f <- function(x,...){
expectedInf(x,...)$step1
}
# compute
net_stat <- roll_your_own(object = fit,
FUN = f,
progress = FALSE)
#######################################
### example 3: mixed data & bridge ####
#######################################
# bridge from this package
library(networktools)
# data
Y <- ptsd[,1:7]
fit <- estimate(Y,
type = "mixed",
iter = 250)
# clusters
communities <- substring(colnames(Y), 1, 1)
# function is slow
f <- function(x, ...){
bridge(x, ...)$`Bridge Strength`
}
net_stat <- roll_your_own(fit,
FUN = f,
select = TRUE,
communities = communities,
progress = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.