Nothing
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
mean_array <- function(x) {
.Call(`_BGGM_mean_array`, x)
}
quantile_type_1 <- function(x, prob) {
.Call(`_BGGM_quantile_type_1`, x, prob)
}
Sigma_i_not_i <- function(x, index) {
.Call(`_BGGM_Sigma_i_not_i`, x, index)
}
select_col <- function(x, index) {
.Call(`_BGGM_select_col`, x, index)
}
select_row <- function(x, index) {
.Call(`_BGGM_select_row`, x, index)
}
remove_row <- function(x, which) {
.Call(`_BGGM_remove_row`, x, which)
}
remove_col <- function(x, index) {
.Call(`_BGGM_remove_col`, x, index)
}
internal_missing_gaussian <- function(Y, Y_missing, Sigma, iter_missing) {
.Call(`_BGGM_internal_missing_gaussian`, Y, Y_missing, Sigma, iter_missing)
}
missing_gaussian <- function(Y, Y_missing, Sigma, iter_missing, progress_impute, store_all, lambda) {
.Call(`_BGGM_missing_gaussian`, Y, Y_missing, Sigma, iter_missing, progress_impute, store_all, lambda)
}
Theta_continuous <- function(Y, iter, delta, epsilon, prior_only, explore, start, progress, impute, Y_missing) {
.Call(`_BGGM_Theta_continuous`, Y, iter, delta, epsilon, prior_only, explore, start, progress, impute, Y_missing)
}
sample_prior <- function(Y, iter, delta, epsilon, prior_only, explore, progress) {
.Call(`_BGGM_sample_prior`, Y, iter, delta, epsilon, prior_only, explore, progress)
}
mv_continuous <- function(Y, X, delta, epsilon, iter, start, progress) {
.Call(`_BGGM_mv_continuous`, Y, X, delta, epsilon, iter, start, progress)
}
trunc_mvn <- function(mu, rinv, z, y, cutpoints) {
.Call(`_BGGM_trunc_mvn`, mu, rinv, z, y, cutpoints)
}
mv_binary <- function(Y, X, delta, epsilon, iter, beta_prior, cutpoints, start, progress) {
.Call(`_BGGM_mv_binary`, Y, X, delta, epsilon, iter, beta_prior, cutpoints, start, progress)
}
mv_ordinal_cowles <- function(Y, X, delta, epsilon, iter, MH) {
.Call(`_BGGM_mv_ordinal_cowles`, Y, X, delta, epsilon, iter, MH)
}
mv_ordinal_albert <- function(Y, X, iter, delta, epsilon, K, start, progress) {
.Call(`_BGGM_mv_ordinal_albert`, Y, X, iter, delta, epsilon, K, start, progress)
}
copula <- function(z0_start, levels, K, Sigma_start, iter, delta, epsilon, idx, progress) {
.Call(`_BGGM_copula`, z0_start, levels, K, Sigma_start, iter, delta, epsilon, idx, progress)
}
pcor_to_cor_internal <- function(x, p) {
.Call(`_BGGM_pcor_to_cor_internal`, x, p)
}
predictability_helper <- function(Y, y, XX, Xy, n, iter) {
.Call(`_BGGM_predictability_helper`, Y, y, XX, Xy, n, iter)
}
beta_helper_fast <- function(XX, Xy, p, iter) {
.Call(`_BGGM_beta_helper_fast`, XX, Xy, p, iter)
}
pred_helper_latent <- function(Y, XX, Xy, quantiles, n, iter) {
.Call(`_BGGM_pred_helper_latent`, Y, XX, Xy, quantiles, n, iter)
}
KL_univariate <- function(var_1, var_2) {
.Call(`_BGGM_KL_univariate`, var_1, var_2)
}
ppc_helper_nodewise_fast <- function(Theta, n1, n2, p) {
.Call(`_BGGM_ppc_helper_nodewise_fast`, Theta, n1, n2, p)
}
KL_divergnece_mvn <- function(Theta_1, Theta_2) {
.Call(`_BGGM_KL_divergnece_mvn`, Theta_1, Theta_2)
}
sum_squares <- function(Rinv_1, Rinv_2) {
.Call(`_BGGM_sum_squares`, Rinv_1, Rinv_2)
}
my_dnorm <- function(x, means, sds) {
.Call(`_BGGM_my_dnorm`, x, means, sds)
}
hamming_distance <- function(Rinv_1, Rinv_2, df1, df2, dens, pcors, BF_cut) {
.Call(`_BGGM_hamming_distance`, Rinv_1, Rinv_2, df1, df2, dens, pcors, BF_cut)
}
correlation <- function(Rinv_1, Rinv_2) {
.Call(`_BGGM_correlation`, Rinv_1, Rinv_2)
}
ppc_helper_fast <- function(Theta, n1, n2, p, BF_cut, dens, ppc_ss, ppc_cors, ppc_hd) {
.Call(`_BGGM_ppc_helper_fast`, Theta, n1, n2, p, BF_cut, dens, ppc_ss, ppc_cors, ppc_hd)
}
mvnrnd <- function(n, mu, Sigma) {
.Call(`_BGGM_mvnrnd`, n, mu, Sigma)
}
var <- function(Y, X, delta, epsilon, beta_prior, iter, start, progress) {
.Call(`_BGGM_var`, Y, X, delta, epsilon, beta_prior, iter, start, progress)
}
hft_algorithm <- function(Sigma, adj, tol, max_iter) {
.Call(`_BGGM_hft_algorithm`, Sigma, adj, tol, max_iter)
}
bic_fast <- function(Theta, S, n, prior_prob) {
.Call(`_BGGM_bic_fast`, Theta, S, n, prior_prob)
}
find_ids <- function(x) {
.Call(`_BGGM_find_ids`, x)
}
search <- function(S, iter, old_bic, start_adj, n, gamma, stop_early, progress) {
.Call(`_BGGM_search`, S, iter, old_bic, start_adj, n, gamma, stop_early, progress)
}
fast_g_matrix_F <- function(Y, adj, mu_samples, cov_samples, iter, p, N, prior_sd, kappa1, progress) {
.Call(`_BGGM_fast_g_matrix_F`, Y, adj, mu_samples, cov_samples, iter, p, N, prior_sd, kappa1, progress)
}
contrained_helper <- function(cors, adj, iter, progress) {
.Call(`_BGGM_contrained_helper`, cors, adj, iter, progress)
}
missing_copula <- function(Y, Y_missing, z0_start, Sigma_start, levels, iter_missing, progress_impute, K, idx, epsilon, delta) {
.Call(`_BGGM_missing_copula`, Y, Y_missing, z0_start, Sigma_start, levels, iter_missing, progress_impute, K, idx, epsilon, delta)
}
missing_copula_data <- function(Y, Y_missing, z0_start, Sigma_start, levels, iter_missing, progress_impute, K, idx, lambda) {
.Call(`_BGGM_missing_copula_data`, Y, Y_missing, z0_start, Sigma_start, levels, iter_missing, progress_impute, K, idx, lambda)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.