Nothing
# ------------------------------------------------------------------------------
# prior --> list containing the information for prior
# [[1]] - the prior distribution type:
# 1 - DIP
# 2 - Beta(a,b)
# [[2]] - a: first parameter of the Beta distribution
# [[3]] - b: second parameter of the Beta distribution
# ------------------------------------------------------------------------------
#' Two sample Bernoulli model - Trial Design
#'
#' Calculate the minimum planned sample size under an admissible design.
#' The users decide the power and type-I-error, and pick the efficacy and futility boundaries.
#' If there are no admissible design based on controlled type-I-error, then default to output
#' the designs with the lowest type-I-error and at least the user-defined (e.g. 80\%) power.
#'
#'
#' @param prior A list of length 3 containing the distributional information of the prior.
#' The first element is a number specifying the type of prior. Options are
#' \enumerate{
#' \item DIP ;
#' \item Beta(a,b), where a = shape, b = scale}
#' The second and third elements of the list are the parameters a and b, respectively.
#' @param nmin The start searching total sample size for two treatment groups.
#' @param nmax The stop searching total sample size for two treatment groups.
#' @param p1 The response rate of the new treatment.
#' @param p2 The response rate of the compared treatment.
#' @param d The target improvement (minimal clinically meaningful difference).
#' @param ps The efficacy boundary (upper boundary).
#' @param pf The futility boundary (lower boundary).
#' @param power The power to achieve.
#' @param t1error The controlled type-I-error.
#' @param alternative less (lower values imply greater efficacy) or greater (larger
#' values imply greater efficacy).
#' @param seed The seed for simulations.
#' @param sim The number of simulations.
#' @return A list of the arguments with method and computed elements
#' @examples
#' \donttest{
#' # with traditional Bayesian prior Beta(1,1)
#' TwoSampleBernoulli.Design(list(2,1,1), nmin = 100, nmax = 120, p1 = 0.5, p2 = 0.3, d = 0,
#' ps = 0.90, pf = 0.05, power = 0.8, t1error = 0.05, alternative = "greater",
#' seed = 202210, sim = 10)
#' # with DIP
#' TwoSampleBernoulli.Design(list(1,0,0), nmin = 100, nmax = 120, p1 = 0.5, p2 = 0.3, d = 0,
#' ps = 0.90, pf = 0.05, power = 0.8, t1error = 0.05, alternative = "greater",
#' seed = 202210, sim = 10)
#' }
#' @import stats
#' @export TwoSampleBernoulli.Design
TwoSampleBernoulli.Design <- function(prior, nmin=10, nmax = 200, p1, p2, d = 0,
ps = 0.95, pf = 0.05, power = 0.80, t1error = 0.05,
alternative = c("less", "greater"), seed = 202209, sim = 500){
alternative <- match.arg(alternative)
# Define the inputs
if(prior[[1]] == 1){
prior[[2]] <- NA
prior[[3]] <- NA
}
## nmin limit
if(!is.null(nmin) && (!is.numeric(nmin) || nmin < 10 || nmin >= nmax))
stop("nmin must be positive number and at least 10")
## nmax limit
if(!is.null(nmax) && (!is.numeric(nmax) || nmax <= nmin || nmax >= 300))
stop("nmax must greater than 'nmin' and less than 300")
## p1 limit
if(!is.null(p1) && (!is.numeric(p1) || (p1 < 0 | p1 > 1)))
stop("p1 must be numeric in [0,1]")
## p2 limit
if(!is.null(p2) && (!is.numeric(p2) || (p2 < 0 | p2 > 1)))
stop("p2 must be numeric in [0,1]")
## d limit
if(!is.null(d) && (!is.numeric(d) || (d < 0 | d > abs(p1-p2))))
stop("d must be numeric in [0, |p1-p2|]")
## efficacy boundary limit
if(!is.null(ps) && (!is.numeric(ps) || (ps < 0.8 | ps > 1)))
stop("ps (efficacy boundary) must be numeric in [0.8,1]")
## futility boundary limit
if(!is.null(pf) && (!is.numeric(pf) || (pf < 0 | pf > 0.2)))
stop("pf (futility boundary) must be numeric in [0,0.2]")
## power limit
if(!is.null(power) && (!is.numeric(power) || (power < 0 | power > 1)))
stop("power must be numeric in [0,1]")
## t1error limit
if(!is.null(t1error) && (!is.numeric(t1error) || (t1error < 0 |t1error > 1)))
stop("type-I-error must be numeric in [0,1]")
## set.seed
if(!is.numeric(seed))
stop("seed must be numeric")
## number of simulation
if(!is.numeric(sim))
stop("simulation number must be numeric")
set.seed(seed)
# Functions to calculate the posterior
Bernoulli <- function(a,b,y){posterior<-rbeta(1000, a+sum(y), b+(length(y)-sum(y)))}
Bernoulli.DIP <- function(p0, y, N){
j<-length(y)
posterior<-rbeta(1000,1+sum(y)+p0*(N-j),1+(j-sum(y))+(1-p0)*(N-j))
}
# Simulated Data
# calculate N that can achieve the power
N_v <- NULL
power_v <- NULL
n1_v <- NULL
n2_v <- NULL
std1_v <- NULL
std2_v <- NULL
for (N in seq(from=nmin, to=nmax, by=1)){
cat1s <- 0
cat1f <- 0
n.enrolled <- NULL
n1.enrolled <- NULL
n2.enrolled <- NULL
for (k in 1:sim) {
y.data<-NULL
Group<-NULL
j<-0
r<-0.5 # equal allocation
cat<-0
cats<-0
catf<-0
pp_stop<-0.5
while(cat == 0)
{
j<-j+1
u<-runif(1,min = 0,max = 1)
if(u<=r){
Group=append(Group,1)
y.data<-append(y.data,rbinom(1,1,p1))}
if(u>r){
Group=append(Group,0)
y.data<-append(y.data,rbinom(1,1,p2))}
Matd<-as.data.frame(cbind(y.data,Group))
y1<-Matd$y[which(Matd$Group==1)]
y2<-Matd$y[which(Matd$Group==0)]
sn1 <- length(y1[y1==1]) # number of successes
sn2 <- length(y2[y2==1])
if(j>=10 & sn1>0 & sn2>0)
{
if (prior[[1]] == 2){
p1s<-Bernoulli(a = prior[[2]], b = prior[[3]], y = y1)
p2s<-Bernoulli(a = prior[[2]], b = prior[[3]], y = y2)
}else if (prior[[1]] == 1){
N1<-ceiling(N/2)
N2<-ceiling(N/2)
p0<-rbeta(1000,1,1) # hyper-prior
p1s<-Bernoulli.DIP(p0, y=y1, N=N1)
p2s<-Bernoulli.DIP(p0, y=y2, N=N2)
p1s[is.na(p1s)]<-sum(y1)/length(y1)
p2s[is.na(p2s)]<-sum(y2)/length(y2)
}
if (alternative == "greater"){
pp_stop<-sum(p1s>p2s+d)/length(p1s)
}else if (alternative == "less"){
pp_stop<-sum(p1s<p2s-d)/length(p1s)
}
}
if(pp_stop>=ps){cats<-1}
if(pp_stop<pf){catf<-1}
cat<-cats+catf
if(j==N){cat<-1}
}
if(cats==1){cat1s<-cat1s+1}
if(cats==0){cat1s<-cat1s}
if(catf==1){cat1f<-cat1f+1}
if(catf==0){cat1f<-cat1f}
# Recruited Sample Size
n.enrolled <- append(n.enrolled, j)
n1.enrolled <- append(n1.enrolled, length(y1))
n2.enrolled <- append(n2.enrolled, length(y2))
}
power.cal <- cat1s/sim
jitter <- 0.01
if (power.cal >= power-jitter){
N_v <- append(N_v, N)
power_v <- append(power_v, power.cal)
n1_v <- append(n1_v, round(mean(n1.enrolled), 0))
n2_v <- append(n2_v, round(mean(n2.enrolled), 0))
std1_v <- append(std1_v, round(sd(n1.enrolled), 1))
std2_v <- append(std2_v, round(sd(n2.enrolled), 1))
}
result1 <- cbind(N_v, power_v, n1_v, std1_v, n2_v, std2_v)
} # End of power calculation
if (is.null(result1)){
message("Suggest: please adjust your input values!")
stop(paste("No sample size in the range [",nmin,",",nmax,"] can achieve ", power*100, "% power", sep=""))
}
# calculate type I error
nmin1 <- N_v[which.min(N_v)] # start minimum sample size in calculation of exact type I error
N_v <- NULL
t1error_v <- NULL
for (N in seq(from=nmin1, to=nmax, by=1)){
cat1s <- 0
cat1f <- 0
for (k in 1:sim) {
y.data<-NULL
Group<-NULL
j<-0
r<-0.5 # equal allocation
cat<-0
cats<-0
catf<-0
pp_stop<-0.5
while(cat == 0)
{
j<-j+1
u<-runif(1,min = 0,max = 1)
if(u<=r){
Group=append(Group,1)
y.data<-append(y.data,rbinom(1,1,p2))} #under the null hypothesis p1 = p2
if(u>r){
Group=append(Group,0)
y.data<-append(y.data,rbinom(1,1,p2))}
Matd<-as.data.frame(cbind(y.data,Group))
y1<-Matd$y[which(Matd$Group==1)]
y2<-Matd$y[which(Matd$Group==0)]
sn1 <- length(y1[y1==1]) # number of successes
sn2 <- length(y2[y2==1])
if(j>=10 & sn1>0 & sn2>0)
{
if (prior[[1]] == 2){
p1s<-Bernoulli(a = prior[[2]], b = prior[[3]], y = y1)
p2s<-Bernoulli(a = prior[[2]], b = prior[[3]], y = y2)
}else if (prior[[1]] == 1){
N1<-ceiling(N/2)
N2<-ceiling(N/2)
p0<-rbeta(1000,1,1) # hyper-prior
p1s<-Bernoulli.DIP(p0, y=y1, N=N1)
p2s<-Bernoulli.DIP(p0, y=y2, N=N2)
p1s[is.na(p1s)]<-sum(y1)/length(y1)
p2s[is.na(p2s)]<-sum(y2)/length(y2)
}
if (alternative == "greater"){
pp_stop<-sum(p1s>p2s+d)/length(p1s)
}else if (alternative == "less"){
pp_stop<-sum(p1s<p2s-d)/length(p1s)
}
}
if(pp_stop>=ps){cats<-1}
if(pp_stop<pf){catf<-1}
cat<-cats+catf
if(j==N){cat<-1}
}
if(cats==1){cat1s<-cat1s+1}
if(cats==0){cat1s<-cat1s}
if(catf==1){cat1f<-cat1f+1}
if(catf==0){cat1f<-cat1f}
}
t1error.cal <- cat1s/sim
N_v <- append(N_v, N)
t1error_v <- append(t1error_v, t1error.cal)
result2 <- cbind(N_v, t1error_v)
} # End of Type-I-error calculation
# Outputs
if (!is.null(result1) & !is.null(result2)){
result <- merge(result1, result2, by=c("N_v"))
final <- as.data.frame(result)
# select the lowest/best-controlled type I error
final$diff <- abs(final$t1error_v - t1error)
final <- final[order(final$diff, final$t1error_v, final$power_v, final$N_v), ]
ff <- final[1,]
planN <- ff$N_v
exact.power <- ff$power_v
exact.t1 <- ff$t1error_v
grp1 = paste(ff$n1_v, " (", ff$std1_v, ")", sep="")
grp2 = paste(ff$n2_v, " (", ff$std2_v, ")", sep="")
if (prior[[1]] == 1) {method = "DIP"
} else if (prior[[1]] == 2) {method = paste("Beta(",prior[[2]], ",", prior[[3]], ")", sep="")}
z <- list(method = method, planned_sample_size = planN,
efficacy_boundary = ps, futility_boundary = pf,
exact_power = exact.power, exact_type_I_error = exact.t1,
expected_sample_size_and_std_for_the_new_treatment_group = grp1,
expected_sample_size_and_std_for_the_compared_treatment_group = grp2)
z
} # End of Outputs
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.