R/bnd2gra.R

Defines functions bnd2gra

Documented in bnd2gra

bnd2gra <- function(map) {
  ## check class of argument
  if (!inherits(map, "bnd")) 
    stop("argument 'map' is not an object of class 'bnd'")
  
  ## extract (unique) regions from the polygons
  regions <- unique(names(map))
  nRegions <- length(regions)
  
  ## initialize return matrix
  retMatrix <- matrix(data = 0, nrow = nRegions, ncol = nRegions, dimnames = list(regions, 
    regions))
  
  ## helper function:
  pointsMatrixToPointsCharVector <- function(pointsMatrix) {
    paste(pointsMatrix[, 1L], pointsMatrix[, 2L], sep = "&")
  }
  
  ## check for neighboring polygons: process only upper triangular part of the
  ## matrix, because it is symmetric.
  
  ## counter for already processed pairs
  nPairsProcessed <- 0L
  
  ## how many pairs need to be processed?
  nPairs <- (nRegions * (nRegions - 1L))/2L
  
  ## and at which iterations should a progress message be printed?
  nProgressIterations <- 10L
  progressIterations <- seq(from = 0L, to = nPairs, length = nProgressIterations + 
    1L)[-1L]
  
  cat("Start neighbor search ...\n")
  
  pointsMatrix <- NULL
  
  ## i is the row region number
  for (i in seq_len(nRegions - 1L)) {
    ## which polygons belong to region number i?
    polyIndsRegion.i <- which(names(map) == regions[i])
    
    ## make a vector of all points (x, y) in the format 'x&y' which belong to this
    ## region
    if (length(polyIndsRegion.i) > 1) {
      pointsMatrix <- map[polyIndsRegion.i[1]]
      for (k in 2:length(polyIndsRegion.i)) pointsMatrix[[1]] <- rbind(pointsMatrix[[1]], 
        map[polyIndsRegion.i[k]][[1]])
    } else {
      pointsMatrix <- map[polyIndsRegion.i]
    }
    pointsRegion.i <- sapply(X = pointsMatrix, FUN = pointsMatrixToPointsCharVector)
    
    ## j is the column region number
    for (j in (i + 1):nRegions) {
      ## which polygons belong to region number j?
      polyIndsRegion.j <- which(names(map) == regions[j])
      
      ## make a vector of all points (x, y) in the format 'x&y' which belong to this
      ## region
      if (length(polyIndsRegion.j) > 1) {
        pointsMatrix <- map[polyIndsRegion.j[1]]
        for (k in 2:length(polyIndsRegion.j)) pointsMatrix[[1]] <- rbind(pointsMatrix[[1]], 
          map[polyIndsRegion.j[k]][[1]])
      } else {
        pointsMatrix <- map[polyIndsRegion.j]
      }
      pointsRegion.j <- sapply(X = pointsMatrix, FUN = pointsMatrixToPointsCharVector)
      
      ## now decide if region i and j share at least 2 common points in their polygons
      if (sum(pointsRegion.i %in% pointsRegion.j) >= 2L) {
        ## then they are neighbors!
        retMatrix[i, j] <- retMatrix[j, i] <- -1L
      }
      
      ## increment counter
      nPairsProcessed <- nPairsProcessed + 1L
      
      ## echo progress?
      if (nPairsProcessed %in% progressIterations) {
        ## echo percentage of processed pairs
        percentageProcessed <- floor((nPairsProcessed * 100L)/nPairs)
        cat(paste("progress: ", percentageProcessed, "%\n", sep = ""))
      }
    }
  }
  
  cat("Neighbor search finished.\n")
  
  ## add is.in relations
  surrounding <- attr(map, "surrounding")
  whichPolygonsAreInner <- which(sapply(surrounding, length) > 0L)
  for (innerInd in whichPolygonsAreInner) {
    innerRegion <- names(map)[innerInd]
    outerRegion <- surrounding[[innerInd]]
    
    retMatrix[innerRegion, outerRegion] <- retMatrix[outerRegion, innerRegion] <- -1L
  }
  
  ## on the diagonal, there are the negative row sums
  diag(retMatrix) <- -rowSums(retMatrix)
  
  ## finally return the matrix as a graph object
  class(retMatrix) <- "gra"
  return(retMatrix)
}

Try the BayesX package in your browser

Any scripts or data that you put into this service are public.

BayesX documentation built on Aug. 24, 2019, 9:03 a.m.