Nothing
# Tests for assessDesign --------------------------------------------------
test_that("base case input throws no error and has correct properties", {
expect_no_error(
eval_design <- assessDesign(
n_patients = n_patients,
mods = mods,
sd = sd,
prior_list = prior_list,
n_sim = n_sim,
alpha_crit_val = alpha_crit_val,
simple = TRUE
)
)
# assessDesign should give results for each model in mods
expect_equal(
names(eval_design), names(mods)
)
# assessDesign result should have rows = n_sim
expect_equal(
attr(eval_design$linear, "dim")[1],
n_sim
)
# assessDesign result (in this base case) should have crit_prob = 1 - alpha_crit_val
expect_equal(
attr(eval_design$linear, "critProb"),
1 - alpha_crit_val
)
contr_mat = getContr(
mods = mods,
dose_levels = dose_levels,
dose_weights = n_patients,
prior_list = prior_list
)
expect_no_error(
eval_design <- assessDesign(
n_patients = n_patients,
mods = mods,
sd = sd,
prior_list = prior_list,
n_sim = n_sim,
alpha_crit_val = alpha_crit_val,
simple = TRUE,
modeling = TRUE
)
)
# assessDesign result should have rows = n_sim
expect_equal(
attr(eval_design$linear$BayesianMCP, "dim")[1],
n_sim
)
# assessDesign result (in this base case) should have crit_prob = 1 - alpha_crit_val
expect_equal(
attr(eval_design$linear$BayesianMCP, "critProb"),
1 - alpha_crit_val
)
expect_no_error(
assessDesign(
n_patients = n_patients,
mods = mods,
sd = sd,
prior_list = prior_list,
n_sim = n_sim,
alpha_crit_val = alpha_crit_val,
simple = TRUE,
reestimate = TRUE,
contr = contr_mat
))
sd_tot <- 9.4
dose_levels <- c(0, 2.5, 5, 10, 20)
prior_list <- lapply(dose_levels, function(dose_group) {
RBesT::mixnorm(weak = c(w = 1, m = 0, s = 200), sigma = 10)
})
names(prior_list) <- c("Ctr", paste0("DG_", dose_levels[-1]))
exp <- DoseFinding::guesst(
d = 5,
p = c(0.2),
model = "exponential",
Maxd = max(dose_levels))
emax <- DoseFinding::guesst(
d = 2.5,
p = c(0.9),
model = "emax")
sigemax <- DoseFinding::guesst(
d = c(2.5, 5),
p = c(0.1, 0.6),
model = "sigEmax")
sigemax2 <- DoseFinding::guesst(
d = c(2, 4),
p = c(0.3, 0.8),
model = "sigEmax")
mods <- DoseFinding::Mods(
linear = NULL,
emax = emax,
exponential = exp,
sigEmax = rbind(sigemax, sigemax2),
doses = dose_levels,
maxEff = -3,
placEff = -12.8)
n_patients <- c(60, 80, 80, 80, 80)
expect_no_error(
assessDesign(
n_patients = n_patients,
mods = mods,
prior_list = prior_list,
sd = sd_tot,
n_sim = 10,
reestimate = TRUE
))
})
### n_patients param ###
test_that("assessDesign validates n_patients parameter input and give appropriate error messages", {
# assertions that aren't tested here for sake of brevity
# n_patients should be a non-NULL numeric vector
expect_error(
assessDesign(n_patients = n_patients[-1], sd = sd, mods = mods, prior_list = prior_list, n_sim = n_sim)
)
expect_error(
assessDesign(n_patients = rep(1, length(n_patients)), sd = sd, mods = mods, prior_list = prior_list, n_sim = n_sim),
)
})
### mods param ###
test_that("assessDesign validates mods parameter input and give appropriate error messages", {
# assertions that aren't tested here for sake of brevity
# mods should be non-NULL object of class "Mods" from {DoseFinding}
# checking that DoseFinding didn't change how they named their 'doses' attribute
expect_true(
"doses" %in% names(attributes(mods))
)
mods2 <- mods
attr(mods2, "doses") <- 0
expect_error(
assessDesign(n_patients = n_patients, mods = mods2, sd = sd, prior_list = prior_list, n_sim = n_sim)
)
rm(mods2)
})
## prior_list param ###
test_that("assessDesign validates prior_list parameter input and give appropriate error messages", {
# assertions that aren't tested here for sake of brevity
# prior_list should be a non-NULL named list with length = number of dose levels
# length(attr(prior_list, "dose_levels")) == n_patients (see above)
# checking that we didn't change how we named the 'dose_levels' attribute
expect_true(
"doses" %in% names(attributes(mods))
)
})
# Tests for getCritProb ---------------------------------------------------
# getCritProb relies on DoseFinding, which we assumes works correctly, so the tests here are minimal
test_that("getCritProb returns the right type of value under normal case", {
crit_pval = getCritProb(
mods = mods,
dose_levels = dose_levels,
dose_weights = n_patients,
alpha_crit_val = alpha_crit_val
)
expect_type(
crit_pval, "double"
)
expect_true(
crit_pval >= 0 & crit_pval <= 1
)
})
# Tests for getContrMat ---------------------------------------------------
# getContrMat relies on DoseFinding, which we assumes works correctly, so the tests here are minimal
test_that("getContrMat returns the right type of object under normal case", {
contr_mat = getContr(
mods = mods,
dose_levels = dose_levels,
dose_weights = n_patients,
prior_list = prior_list
)
expect_s3_class(
contr_mat, "optContr"
)
})
test_that("getContrMat works as expected", {
dose_levels <- c(0, 2.5, 5, 10)
sd_posterior <- c(2.8, 3, 2.5, 3.5)
contr_mat_post_sd <- getContr(
mods = mods,
dose_levels = dose_levels,
sd_posterior = sd_posterior
)
se_new_trial <- c(0.3, 0.7, 0.9, 2.1)
contr_mat_se_new = getContr(
mods = mods,
dose_levels = dose_levels,
se_new_trial = se_new_trial
)
expect_s3_class(
contr_mat_post_sd, "optContr"
)
expect_no_error(contr_mat_post_sd)
expect_s3_class(
contr_mat_se_new, "optContr"
)
expect_no_error(contr_mat_se_new)
expect_error(
getContr(
mods = mods,
dose_levels = dose_levels
)
)
})
# Tests for performBayesianMCP --------------------------------------------
test_that("performBayesianMCP returns the right type of object under normal case", {
data <- simulateData(
n_patients = n_patients,
dose_levels = dose_levels,
sd = sd,
mods = mods,
n_sim = n_sim
)
posterior_list <- getPosterior(
data = getModelData(data, names(mods)[1]),
prior_list = prior_list
)
contr_mat = getContr(
mods = mods,
dose_levels = dose_levels,
dose_weights = n_patients,
prior_list = prior_list
)
crit_pval = getCritProb(
mods = mods,
dose_levels = dose_levels,
dose_weights = n_patients,
alpha_crit_val = alpha_crit_val
)
b_mcp <- performBayesianMCP(
posterior_list = posterior_list,
contr = contr_mat,
crit_prob_adj = crit_pval
)
expect_s3_class(
b_mcp,
"BayesianMCP"
)
expect_true(
attr(b_mcp, "critProbAdj") == crit_pval
)
expect_type(
attr(b_mcp, "essAvg"), "logical"
)
expect_type(
attr(b_mcp, "successRate"), "double"
)
expect_type(b_mcp, "double")
})
# Tests for performBayesianMCPMod -----------------------------------------
test_that("performBayesianMCPMod returns the right type of object under normal case", {
b_mcp_mod <- performBayesianMCPMod(
posterior_list = posterior_list,
contr = contr_mat,
crit_prob_adj = crit_pval
)
expect_s3_class(
b_mcp_mod,
"BayesianMCPMod"
)
expect_true(
all(names(b_mcp_mod) == c("BayesianMCP", "Mod"))
)
})
# Tests for addSignificance -----------------------------------------------
test_that("addSignificance works as intended", {
model_fits <- list(linear = 1)
model_fits_with_sign = addSignificance(model_fits, list(TRUE))
expect_true(
model_fits_with_sign[[1]][["significant"]]
)
model_fits_with_sign = addSignificance(model_fits, list(FALSE))
expect_false(
model_fits_with_sign[[1]]$significant
)
})
# Tests for getPostProb ---------------------------------------------------
# Test for getPostProb
test_that("getPostProb works correctly in a simple case", {
# Create a test case
contr_j <- c(1, 1)
post_combs_i <- list(
means = matrix(c(0, 0, 1, 1), nrow = 2),
vars = matrix(c(0, 0, 1, 1), nrow = 2),
weights = c(0.5, 0.5)
)
# Call the function with the test case
result <- getPostProb(
contr_j,
post_combs_i
)
# Assert the expected behavior
expect_equal(result, stats::pnorm(1))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.