Nothing
zip.lerouxCARMCMC <- function(Y, offset, offset.omega, X.standardised, V.standardised, W, rho, fix.rho, K, p, q, which.miss, n.miss, which.zero, n.zero, burnin, n.sample, thin, MALA, n.beta.block, list.block, n.delta.block, list.block.delta, prior.mean.beta, prior.var.beta, prior.mean.delta, prior.var.delta, prior.tau2, verbose, chain)
{
# Rcpp::sourceCpp("src/CARBayes.cpp")
# source("R/common.functions.R")
# library(spdep)
# library(truncnorm)
#
#
##########################################
#### Generate the initial parameter values
##########################################
#### Initial parameter values
mod.glm <- glm(Y[Y>0]~X.standardised[Y>0, ]-1, offset=offset[Y>0], family="quasipoisson")
beta.mean <- mod.glm$coefficients
beta.sd <- sqrt(diag(summary(mod.glm)$cov.scaled))
beta <- rnorm(n=length(beta.mean), mean=beta.mean, sd=beta.sd)
log.Y <- log(Y)
log.Y[Y==0] <- -0.1
res.temp <- log.Y - X.standardised %*% beta.mean - offset
res.sd <- sd(res.temp, na.rm=TRUE)/5
phi <- rnorm(n=K, mean=rep(0,K), sd=res.sd)
tau2 <- var(phi) / 10
Y.zero <- rep(0,K)
Y.zero[which.zero] <- 1
mod.glm2 <- glm(Y.zero~V.standardised-1, offset=offset.omega, family="binomial")
delta.mean <- mod.glm2$coefficients
delta.sd <- sqrt(diag(summary(mod.glm2)$cov.scaled))
delta <- rnorm(n=length(delta.mean), mean=delta.mean, sd=delta.sd)
omega <- exp(V.standardised %*% delta+offset.omega) / (1+exp(V.standardised %*% delta+offset.omega))
prob.pointmass <- omega[which.zero] / (omega[which.zero]+(1-omega[which.zero])*exp(-exp(as.matrix(X.standardised[which.zero, ]) %*% beta + offset[which.zero])))
Z <- rep(0, K)
Z[which.zero] <- rbinom(n=n.zero, size=1, prob=prob.pointmass)
###################################################################
#### Compute the fitted values based on the current parameter values
####################################################################
fitted <- exp(as.numeric(X.standardised %*% beta) + offset + phi)
Y.DA <- Y
########################################
#### Set up the MCMC model run quantities
#########################################
#### Matrices to store samples
n.keep <- floor((n.sample - burnin)/thin)
samples.beta <- array(NA, c(n.keep, p))
samples.phi <- array(NA, c(n.keep, K))
samples.tau2 <- array(NA, c(n.keep, 1))
if(!fix.rho) samples.rho <- array(NA, c(n.keep, 1))
samples.delta <- array(NA, c(n.keep, q))
samples.Z <- array(NA, c(n.keep, K))
samples.loglike <- array(NA, c(n.keep, K))
samples.fitted <- array(NA, c(n.keep, K))
if(n.miss>0) samples.Y <- array(NA, c(n.keep, n.miss))
#### Metropolis quantities
accept <- rep(0,8)
proposal.sd.beta <- 0.01
proposal.sd.delta <- 0.01
proposal.sd.phi <- 0.1
proposal.sd.rho <- 0.02
tau2.posterior.shape <- prior.tau2[1] + 0.5 * K
##################################
#### Set up the spatial quantities
##################################
#### CAR quantities
W.quants <- common.Wcheckformat(W)
W <- W.quants$W
W.triplet <- W.quants$W.triplet
n.triplet <- W.quants$n.triplet
W.triplet.sum <- W.quants$W.triplet.sum
n.neighbours <- W.quants$n.neighbours
W.begfin <- W.quants$W.begfin
#### Create the determinant
if(!fix.rho)
{
Wstar <- diag(apply(W,1,sum)) - W
Wstar.eigen <- eigen(Wstar)
Wstar.val <- Wstar.eigen$values
det.Q <- 0.5 * sum(log((rho * Wstar.val + (1-rho))))
}else
{}
#### Check for islands
W.list<- mat2listw(W, style = "B")
W.nb <- W.list$neighbours
W.islands <- n.comp.nb(W.nb)
islands <- W.islands$comp.id
n.islands <- max(W.islands$nc)
if(rho==1) tau2.posterior.shape <- prior.tau2[1] + 0.5 * (K-n.islands)
#### Start timer
if(verbose)
{
cat("\nMarkov chain", chain, "- generating", n.keep, "post burnin and thinned samples.\n", sep = " ")
progressBar <- txtProgressBar(style = 3)
percentage.points<-round((1:100/100)*n.sample)
}else
{
percentage.points<-round((1:100/100)*n.sample)
}
######################
#### Run an MCMC chain
######################
#### Create the MCMC samples
for(j in 1:n.sample)
{
####################################
## Sample from Y - data augmentation
####################################
if(n.miss>0)
{
Y.DA[which.miss==0] <- rpois(n=n.miss, lambda=fitted[which.miss==0]) * (1-Z[which.miss==0])
}else
{}
which.zero <- which(Y.DA==0)
n.zero <- length(which.zero)
###################################
#### Update Z via data augmentation
###################################
prob.pointmass <- omega[which.zero] / (omega[which.zero] + (1 - omega[which.zero]) * exp(-exp(as.matrix(X.standardised[which.zero, ]) %*% beta + offset[which.zero] + phi[which.zero])))
Z <- rep(0, K)
Z[which.zero] <- rbinom(n=n.zero, size=1, prob=prob.pointmass)
####################
## Sample from beta
####################
Z.zero <- which(Z==0)
offset.temp <- offset[Z.zero] + phi[Z.zero]
if(MALA)
{
temp <- poissonbetaupdateMALA(as.matrix(X.standardised[Z.zero, ]), length(Z.zero), p, beta, offset.temp, Y.DA[Z.zero], prior.mean.beta, prior.var.beta, n.beta.block, proposal.sd.beta, list.block)
}else
{
temp <- poissonbetaupdateRW(as.matrix(X.standardised[Z.zero, ]), length(Z.zero), p, beta, offset.temp, Y.DA[Z.zero], prior.mean.beta, prior.var.beta, n.beta.block, proposal.sd.beta, list.block)
}
beta <- temp[[1]]
regression <- X.standardised %*% beta
accept[1] <- accept[1] + temp[[2]]
accept[2] <- accept[2] + n.beta.block
####################
## Sample from phi
####################
beta.offset <- regression + offset
temp1 <- zipcarupdateRW(Wtriplet=W.triplet, Wbegfin=W.begfin, W.triplet.sum, nsites=K, phi=phi, tau2=tau2, y=Y.DA, phi_tune=proposal.sd.phi, rho=rho, offset=beta.offset, 1-Z)
phi <- temp1[[1]]
if(rho<1)
{
phi <- phi - mean(phi)
}else
{
phi[which(islands==1)] <- phi[which(islands==1)] - mean(phi[which(islands==1)])
}
accept[3] <- accept[3] + temp1[[2]]
accept[4] <- accept[4] + sum(Z==0)
##################
## Sample from tau2
##################
temp2 <- quadform(W.triplet, W.triplet.sum, n.triplet, K, phi, phi, rho)
tau2.posterior.scale <- temp2 + prior.tau2[2]
tau2 <- 1 / rgamma(1, tau2.posterior.shape, scale=(1/tau2.posterior.scale))
##################
## Sample from rho
##################
if(!fix.rho)
{
proposal.rho <- rtruncnorm(n=1, a=0, b=1, mean=rho, sd=proposal.sd.rho)
temp3 <- quadform(W.triplet, W.triplet.sum, n.triplet, K, phi, phi, proposal.rho)
det.Q.proposal <- 0.5 * sum(log((proposal.rho * Wstar.val + (1-proposal.rho))))
logprob.current <- det.Q - temp2 / tau2
logprob.proposal <- det.Q.proposal - temp3 / tau2
hastings <- log(dtruncnorm(x=rho, a=0, b=1, mean=proposal.rho, sd=proposal.sd.rho)) - log(dtruncnorm(x=proposal.rho, a=0, b=1, mean=rho, sd=proposal.sd.rho))
prob <- exp(logprob.proposal - logprob.current + hastings)
#### Accept or reject the proposal
if(prob > runif(1))
{
rho <- proposal.rho
det.Q <- det.Q.proposal
accept[5] <- accept[5] + 1
}else
{
}
accept[6] <- accept[6] + 1
}else
{}
######################
#### Sample from delta
######################
offset.temp <- offset.omega
if(MALA)
{
temp <- binomialbetaupdateMALA(V.standardised, K, q, delta, offset.temp, Z, 1-Z, rep(1,K), prior.mean.delta, prior.var.delta, n.delta.block, proposal.sd.delta, list.block.delta)
}else
{
temp <- binomialbetaupdateRW(V.standardised, K, q, delta, offset.temp, Z, 1-Z, prior.mean.delta, prior.var.delta, n.delta.block, proposal.sd.delta, list.block.delta)
}
delta <- temp[[1]]
accept[7] <- accept[7] + temp[[2]]
accept[8] <- accept[8] + n.delta.block
omega <- exp(V.standardised %*% delta+offset.omega) / (1+exp(V.standardised %*% delta+offset.omega))
#########################
## Calculate the deviance
#########################
lp <- as.numeric(regression) + phi + offset
fitted <- exp(lp)
fitted.zip <- fitted * (1-omega)
temp <- rep(0,K)
temp[Z==1] <- log(omega[Z==1])
loglike <- temp + (1-Z) * (log(1-omega) + dpois(x=as.numeric(Y), lambda=fitted, log=T))
###################
## Save the results
###################
if(j > burnin & (j-burnin)%%thin==0)
{
ele <- (j - burnin) / thin
samples.beta[ele, ] <- beta
samples.phi[ele, ] <- phi
samples.tau2[ele, ] <- tau2
if(!fix.rho) samples.rho[ele, ] <- rho
samples.delta[ele, ] <- delta
samples.Z[ele, ] <- Z
samples.loglike[ele, ] <- loglike
samples.fitted[ele, ] <- fitted.zip
if(n.miss>0) samples.Y[ele, ] <- Y.DA[which.miss==0]
}else
{}
########################################
## Self tune the acceptance probabilties
########################################
if(ceiling(j/100)==floor(j/100) & j < burnin)
{
#### Update the proposal sds
## beta
if(p>2)
{
proposal.sd.beta <- common.accceptrates1(accept[1:2], proposal.sd.beta, 40, 50)
}else
{
proposal.sd.beta <- common.accceptrates1(accept[1:2], proposal.sd.beta, 30, 40)
}
## delta
if(q>2)
{
proposal.sd.delta <- common.accceptrates1(accept[7:8], proposal.sd.delta, 40, 50)
}else
{
proposal.sd.delta <- common.accceptrates1(accept[7:8], proposal.sd.delta, 30, 40)
}
proposal.sd.phi <- common.accceptrates1(accept[3:4], proposal.sd.phi, 40, 50)
if(!fix.rho) proposal.sd.rho <- common.accceptrates2(accept[5:6], proposal.sd.rho, 40, 50, 0.5)
accept <- rep(0,8)
}else
{}
################################
## print progress to the console
################################
if(j %in% percentage.points & verbose)
{
setTxtProgressBar(progressBar, j/n.sample)
}
}
##### end timer
if(verbose)
{
close(progressBar)
}else
{}
############################################
#### Return the results to the main function
############################################
#### Compile the results
if(n.miss==0) samples.Y = NA
if(fix.rho) samples.rho=NA
chain.results <- list(samples.beta=samples.beta, samples.phi=samples.phi, samples.tau2=samples.tau2, samples.rho=samples.rho, samples.delta=samples.delta, samples.Z=samples.Z, samples.loglike=samples.loglike, samples.fitted=samples.fitted,
samples.Y=samples.Y, accept=accept)
#### Return the results
return(chain.results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.