Nothing
poisson.CARar2MCMC <- function(Y, offset, X.standardised, W, rho, alpha, fix.rho.S, fix.rho.T, K, N, N.all, p, which.miss, n.miss, burnin, n.sample, thin, MALA, n.beta.block, list.block, prior.mean.beta, prior.var.beta, prior.tau2, verbose, chain)
{
#Rcpp::sourceCpp("src/CARBayesST.cpp")
#source("R/common.functions.R")
#library(spdep)
#library(truncnorm)
#library(MASS)
#
#
############################################
#### Set up the key elements before sampling
############################################
#### Generate the initial parameter values
mod.glm <- glm(Y~X.standardised-1, offset=offset, family="quasipoisson")
beta.mean <- mod.glm$coefficients
beta.sd <- sqrt(diag(summary(mod.glm)$cov.scaled))
beta <- rnorm(n=length(beta.mean), mean=beta.mean, sd=beta.sd)
log.Y <- log(Y)
log.Y[Y==0] <- -0.1
res.temp <- log.Y - X.standardised %*% beta - offset
res.sd <- sd(res.temp, na.rm=TRUE)/5
phi <- rnorm(n=N.all, mean=0, sd = res.sd)
tau2 <- var(phi)/10
#### Specify matrix quantities
Y.DA <- Y
offset.mat <- matrix(offset, nrow=K, ncol=N, byrow=FALSE)
regression.mat <- matrix(X.standardised %*% beta, nrow=K, ncol=N, byrow=FALSE)
phi.mat <- matrix(phi, nrow=K, ncol=N, byrow=FALSE)
fitted <- exp(as.numeric(offset.mat + regression.mat + phi.mat))
#### Matrices to store samples
n.keep <- floor((n.sample - burnin)/thin)
samples.beta <- array(NA, c(n.keep, p))
samples.phi <- array(NA, c(n.keep, N.all))
samples.tau2 <- array(NA, c(n.keep, 1))
if(!fix.rho.S) samples.rho <- array(NA, c(n.keep, 1))
if(!fix.rho.T) samples.alpha <- array(NA, c(n.keep, 2))
samples.fitted <- array(NA, c(n.keep, N.all))
samples.loglike <- array(NA, c(n.keep, N.all))
if(n.miss>0) samples.Y <- array(NA, c(n.keep, n.miss))
#### Specify the Metropolis quantities
accept <- rep(0,6)
proposal.sd.phi <- 0.1
proposal.sd.rho <- 0.05
proposal.sd.beta <- 0.01
tau2.shape <- prior.tau2[1] + N.all/2
#### CAR quantities
W.quants <- common.Wcheckformat.leroux(W)
W <- W.quants$W
W.triplet <- W.quants$W.triplet
W.n.triplet <- W.quants$n.triplet
W.triplet.sum <- W.quants$W.triplet.sum
n.neighbours <- W.quants$n.neighbours
W.begfin <- W.quants$W.begfin
#### Create the determinant
if(!fix.rho.S)
{
Wstar <- diag(apply(W,1,sum)) - W
Wstar.eigen <- eigen(Wstar)
Wstar.val <- Wstar.eigen$values
det.Q.W <- 0.5 * sum(log((rho * Wstar.val + (1-rho))))
}else
{}
#### Check for islands
W.list<- mat2listw(W, style = "B")
W.nb <- W.list$neighbours
W.islands <- n.comp.nb(W.nb)
islands <- W.islands$comp.id
n.islands <- max(W.islands$nc)
if(rho==1 & alpha[1]==2 & alpha[2]==-1)
{
tau2.shape <- prior.tau2[1] + prior.tau2[1] + ((N-2) * (K-n.islands))/2
}else if(rho==1)
{
tau2.shape <- prior.tau2[1] + prior.tau2[1] + (N * (K-n.islands))/2
}else if(alpha[1]==2 & alpha[2]==-1)
{
tau2.shape <- prior.tau2[1] + prior.tau2[1] + ((N-2) * K)/2
}else
{}
#### Start timer
if(verbose)
{
cat("\nMarkov chain", chain, "- generating", n.keep, "post burnin and thinned samples.\n", sep = " ")
progressBar <- txtProgressBar(style = 3)
percentage.points<-round((1:100/100)*n.sample)
}else
{
percentage.points<-round((1:100/100)*n.sample)
}
##############################
#### Generate the MCMC samples
##############################
#### Create the MCMC samples
for(j in 1:n.sample)
{
####################################
## Sample from Y - data augmentation
####################################
if(n.miss>0)
{
Y.DA[which.miss==0] <- rpois(n=n.miss, lambda=fitted[which.miss==0])
}else
{}
Y.DA.mat <- matrix(Y.DA, nrow=K, ncol=N, byrow=FALSE)
####################
## Sample from beta
####################
offset.temp <- as.numeric(offset.mat + phi.mat)
if(MALA)
{
temp <- poissonbetaupdateMALA(X.standardised, N.all, p, beta, offset.temp, Y.DA, prior.mean.beta, prior.var.beta, n.beta.block, proposal.sd.beta, list.block)
}else
{
temp <- poissonbetaupdateRW(X.standardised, N.all, p, beta, offset.temp, Y.DA, prior.mean.beta, prior.var.beta, n.beta.block, proposal.sd.beta, list.block)
}
beta <- temp[[1]]
accept[1] <- accept[1] + temp[[2]]
accept[2] <- accept[2] + n.beta.block
regression.mat <- matrix(X.standardised %*% beta, nrow=K, ncol=N, byrow=FALSE)
####################
## Sample from phi
####################
phi.offset <- offset.mat + regression.mat
den.offset <- rho * W.triplet.sum + 1 - rho
temp1 <- poissonar2carupdateRW(W.triplet, W.begfin, W.triplet.sum, K, N, phi.mat, tau2, alpha[1], alpha[2], rho, Y.DA.mat, proposal.sd.phi, phi.offset, den.offset)
phi.temp <- temp1[[1]]
phi <- as.numeric(phi.temp) - mean(as.numeric(phi.temp))
phi.mat <- matrix(phi, nrow=K, ncol=N, byrow=FALSE)
accept[3] <- accept[3] + temp1[[2]]
accept[4] <- accept[4] + K*N
####################
## Sample from alpha
####################
if(!fix.rho.T)
{
#### Construct the quadratic forms
temp2 <- alphaquadformcompute(W.triplet, W.triplet.sum, W.n.triplet, K, N, phi.mat, rho, tau2)
#### Construct the precision matrix
alpha.prec <- array(c(temp2[[1]], temp2[[3]], temp2[[3]], temp2[[2]]), c(2,2))
alpha.var <- solve(alpha.prec)
#### Construct the mean vector
U2 <- (temp2[[1]] * temp2[[5]] - temp2[[3]] * temp2[[4]]) / (temp2[[2]] * temp2[[1]] - temp2[[3]]^2)
U1 <- (1 / temp2[[3]]) * (temp2[[5]] - temp2[[2]] * U2)
alpha.mean <- c(U1, U2)
alpha <- mvrnorm(n=1, mu=alpha.mean, Sigma=alpha.var)
}else
{}
####################
## Samples from tau2
####################
temp3 <- tauquadformcomputear2(W.triplet, W.triplet.sum, W.n.triplet, K, N, phi.mat, rho, alpha[1], alpha[2])
tau2.scale <- temp3 + prior.tau2[2]
tau2 <- 1 / rgamma(1, tau2.shape, scale=(1/tau2.scale))
##################
## Sample from rho
##################
if(!fix.rho.S)
{
proposal.rho <- rtruncnorm(n=1, a=0, b=1, mean=rho, sd=proposal.sd.rho)
temp4 <- tauquadformcomputear2(W.triplet, W.triplet.sum, W.n.triplet, K, N, phi.mat, proposal.rho, alpha[1], alpha[2])
det.Q.W.proposal <- 0.5 * sum(log((proposal.rho * Wstar.val + (1-proposal.rho))))
logprob.current <- N * det.Q.W - temp3 / tau2
logprob.proposal <- N * det.Q.W.proposal - temp4 / tau2
hastings <- log(dtruncnorm(x=rho, a=0, b=1, mean=proposal.rho, sd=proposal.sd.rho)) - log(dtruncnorm(x=proposal.rho, a=0, b=1, mean=rho, sd=proposal.sd.rho))
prob <- exp(logprob.proposal - logprob.current + hastings)
if(prob > runif(1))
{
rho <- proposal.rho
det.Q.W <- det.Q.W.proposal
accept[5] <- accept[5] + 1
}else
{
}
accept[6] <- accept[6] + 1
}else
{}
#########################
## Calculate the deviance
#########################
lp <- as.numeric(offset.mat + regression.mat + phi.mat)
fitted <- exp(lp)
loglike <- dpois(x=as.numeric(Y), lambda=fitted, log=TRUE)
###################
## Save the results
###################
if(j > burnin & (j-burnin)%%thin==0)
{
ele <- (j - burnin) / thin
samples.beta[ele, ] <- beta
samples.phi[ele, ] <- as.numeric(phi)
samples.tau2[ele, ] <- tau2
if(!fix.rho.S) samples.rho[ele, ] <- rho
if(!fix.rho.T) samples.alpha[ele, ] <- alpha
samples.fitted[ele, ] <- fitted
samples.loglike[ele, ] <- loglike
if(n.miss>0) samples.Y[ele, ] <- Y.DA[which.miss==0]
}else
{}
########################################
## Self tune the acceptance probabilties
########################################
if(ceiling(j/100)==floor(j/100) & j < burnin)
{
#### Update the proposal sds
if(p>2)
{
proposal.sd.beta <- common.accceptrates1(accept[1:2], proposal.sd.beta, 40, 50)
}else
{
proposal.sd.beta <- common.accceptrates1(accept[1:2], proposal.sd.beta, 30, 40)
}
proposal.sd.phi <- common.accceptrates1(accept[3:4], proposal.sd.phi, 40, 50)
if(!fix.rho.S) proposal.sd.rho <- common.accceptrates2(accept[5:6], proposal.sd.rho, 40, 50, 0.5)
accept <- rep(0,6)
}else
{}
################################
## print progress to the console
################################
if(j %in% percentage.points & verbose)
{
setTxtProgressBar(progressBar, j/n.sample)
}
}
############################################
#### Return the results to the main function
############################################
#### Compile the results
if(n.miss==0) samples.Y <- NA
if(fix.rho.S) samples.rho <- NA
if(fix.rho.T) samples.alpha <- NA
chain.results <- list(samples.beta=samples.beta, samples.phi=samples.phi, samples.tau2=samples.tau2, samples.rho=samples.rho, samples.alpha=samples.alpha, samples.loglike=samples.loglike, samples.fitted=samples.fitted,
samples.Y=samples.Y, accept=accept)
#### Return the results
return(chain.results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.