Nothing
loaddata <- function() {
# prepare sample data:
data(cookfarm)
dat <- aggregate(cookfarm[,c("VW","Easting","Northing")],by=list(as.character(cookfarm$SOURCEID)),mean)
pts <- sf::st_as_sf(dat,coords=c("Easting","Northing"))
pts$ID <- 1:nrow(pts)
set.seed(100)
pts <- pts[1:30,]
studyArea <- terra::rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST"))[[1:8]]
trainDat <- terra::extract(studyArea,pts,na.rm=FALSE)
trainDat <- merge(trainDat,pts,by.x="ID",by.y="ID")
# train a model:
set.seed(100)
variables <- c("DEM","NDRE.Sd","TWI")
ctrl <- caret::trainControl(method="cv",number=5,savePredictions=T)
model <- caret::train(trainDat[,which(names(trainDat)%in%variables)],
trainDat$VW, method="rf", importance=TRUE, tuneLength=1,
trControl=ctrl)
data <- list(
studyArea = studyArea,
trainDat = trainDat,
variables = variables,
model = model
)
return(data)
}
test_that("AOA works in default: used with raster data and a trained model", {
skip_if_not_installed("randomForest")
dat <- loaddata()
# calculate the AOA of the trained model for the study area:
AOA <- aoa(dat$studyArea, dat$model, verbose = F)
#test threshold:
expect_equal(as.numeric(round(AOA$parameters$threshold,5)), 0.38986)
#test number of pixels within AOA:
expect_equal(sum(terra::values(AOA$AOA)==1,na.rm=TRUE), 2936)
# test trainDI
expect_equal(AOA$parameters$trainDI, c(0.09043580, 0.14046341, 0.16584582, 0.57617177, 0.26840303,
0.14353894, 0.19768329, 0.24022059, 0.06832037, 0.29150668,
0.18471625, 0.57617177, 0.12344463, 0.09043580, 0.14353894,
0.26896008, 0.22713731, 0.24022059, 0.20388725, 0.06832037,
0.23604264, 0.20388725, 0.91513568, 0.09558666, 0.14046341,
0.16214832, 0.37107762, 0.16214832, 0.18471625, 0.12344463))
# test summary statistics of the DI
expect_equal(as.vector(summary(terra::values(AOA$DI))),
c("Min. :0.0000 ", "1st Qu.:0.1329 ", "Median :0.2052 ",
"Mean :0.2858 ", "3rd Qu.:0.3815 ",
"Max. :4.4485 ", "NA's :1993 "))
})
test_that("AOA works without a trained model", {
skip_if_not_installed("randomForest")
dat <- loaddata()
AOA <- aoa(dat$studyArea,train=dat$trainDat,variables=dat$variables, verbose = F)
#test threshold:
expect_equal(as.numeric(round(AOA$parameters$threshold,5)), 0.52872)
#test number of pixels within AOA:
expect_equal(sum(terra::values(AOA$AOA)==1,na.rm=TRUE), 3377)
# test summary statistics of the DI
expect_equal(as.vector(summary(terra::values(AOA$DI))),
c("Min. :0.0000 ", "1st Qu.:0.1759 ", "Median :0.2642 ",
"Mean :0.3109 ", "3rd Qu.:0.4051 ",
"Max. :2.6631 ", "NA's :1993 "))
})
test_that("AOA (including LPD) works with raster data and a trained model", {
skip_if_not_installed("randomForest")
dat <- loaddata()
# calculate the AOA of the trained model for the study area:
AOA <- aoa(dat$studyArea, dat$model, LPD = TRUE, maxLPD = 1, verbose = F)
#test threshold:
expect_equal(as.numeric(round(AOA$parameters$threshold,5)), 0.38986)
#test number of pixels within AOA:
expect_equal(sum(terra::values(AOA$AOA)==1,na.rm=TRUE), 2936)
#test trainLPD
expect_equal(AOA$parameters$trainLPD, c(3, 4, 6, 0, 7,
6, 2, 1, 5, 3,
4, 0, 1, 2, 6,
5, 4, 4, 5, 7,
3, 4, 0, 2, 3,
6, 1, 7, 3, 2))
# test summary statistics of the DI
expect_equal(as.vector(summary(terra::values(AOA$DI))),
c("Min. :0.0000 ", "1st Qu.:0.1329 ", "Median :0.2052 ",
"Mean :0.2858 ", "3rd Qu.:0.3815 ",
"Max. :4.4485 ", "NA's :1993 "))
})
test_that("AOA (inluding LPD) works without a trained model", {
skip_if_not_installed("randomForest")
dat <- loaddata()
AOA <- aoa(dat$studyArea,train=dat$trainDat,variables=dat$variables, LPD = TRUE, maxLPD = 1, verbose = F)
#test threshold:
expect_equal(as.numeric(round(AOA$parameters$threshold,5)), 0.52872)
#test number of pixels within AOA:
expect_equal(sum(terra::values(AOA$AOA)==1,na.rm=TRUE), 3377)
# test trainLPD
expect_equal(AOA$parameters$trainLPD, c(7, 9, 12, 1, 12,
12, 4, 2, 8, 10,
6, 1, 3,4, 11,
9, 9, 7, 5, 5,
6, 5, 0, 5, 9,
8, 4, 11, 3,2))
# test summary statistics of the DI
expect_equal(as.vector(summary(terra::values(AOA$DI))),
c("Min. :0.0000 ", "1st Qu.:0.1759 ", "Median :0.2642 ",
"Mean :0.3109 ", "3rd Qu.:0.4051 ",
"Max. :2.6631 ", "NA's :1993 "))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.