R/IRT_RMSD_calc_md.R

Defines functions IRT_RMSD_calc_md

## File Name: IRT_RMSD_calc_md.R
## File Version: 2.17


#-- MD statistic
IRT_RMSD_calc_md <- function( n.ik, pi.k, probs, eps=1e-30 )
{
    # probs ... [ classes, items, categories ]
    # n.ik ... [ classes, items, categories, groups ]
    # N.ik ... [ classes, items, categories]
    N.ik <- n.ik[,,,1]
    G <- dim(n.ik)[4]
    pitot <- pi.k[,1]
    eps <- 1E-10
    if (G>1){
        for (gg in 2:G){
            N.ik <- N.ik + n.ik[,,,gg]
            pitot <- pitot + pi.k[,gg]
        }
    }

    #*** extract maximum number of categories
    maxK <- apply( N.ik, c(2,3), sum, na.rm=TRUE )
    maxK <- rowSums( maxK > eps )

    # calculate summed counts
    N.ik_tot <- array( 0, dim=dim(N.ik) )
    N.ik_tot[,,1] <- N.ik[,,1,drop=FALSE]
    K <- dim(N.ik)[3]
    for (kk in 2:K){
        N.ik_tot[,,1] <- N.ik_tot[,,1,drop=FALSE] + N.ik[,,kk,drop=FALSE]
    }

    for (kk in 2:K){
        N.ik_tot[,,kk] <- N.ik_tot[,,1]
    }

    # calculate itemwise statistics
    p.ik_observed <- N.ik / ( N.ik_tot + eps )
    p.ik_observed[ is.na( p.ik_observed ) ] <- 0

    # define class weights
    pi.k_tot <- array( 0, dim=dim(p.ik_observed) )
    for (kk in 1:K){
        pi.k_tot[,,kk] <- matrix( pitot, nrow=dim(pi.k_tot)[1], ncol=dim(pi.k_tot)[2], byrow=FALSE )
    }
    # calculate statistics
    dist.item <- pi.k_tot * ( p.ik_observed - probs )
    h1 <- 0 * dist.item[,,1]
    for (kk in 2:K){
        h1 <- h1 + (kk-1) * dist.item[,,kk]
    }
    itemfit.md <- colSums( h1 / ( maxK - 1) )
    v1 <- apply(p.ik_observed, 2, sum)
    itemfit.md[ v1==0 ] <- NA
    return(itemfit.md)
}

Try the CDM package in your browser

Any scripts or data that you put into this service are public.

CDM documentation built on Aug. 25, 2022, 5:08 p.m.