Nothing
test_that("the function throws no errors with one new sample and a one component model", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(A[,1])
# Remove a sample and define
i = 1
Xtest = lapply(Z$object, function(x){x@data[i,,]})
Ytest = Y[i]
Xtrain = lapply(Z$object, function(x){x@data[-i,,]})
Ytrain = Y[-i]
Ztrain = setupCMTFdata(Xtrain, Z$modes)
model = acmtfr_opt(Ztrain,Ytrain,1,initialization="random",pi=0, nstart=1, max_iter=10)
expect_no_error(npred(model, Xtest, Ztrain))
})
test_that("the function throws no errors with one new sample and a two component model", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(A[,1])
# Remove a sample and define
i = 1
Xtest = lapply(Z$object, function(x){x@data[i,,]})
Ytest = Y[i]
Xtrain = lapply(Z$object, function(x){x@data[-i,,]})
Ytrain = Y[-i]
Ztrain = setupCMTFdata(Xtrain, Z$modes)
model = acmtfr_opt(Ztrain,Ytrain,2,initialization="random",pi=0, nstart=1, max_iter=10)
expect_no_error(npred(model, Xtest, Ztrain))
})
test_that("the function throws no errors with several new samples", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(A[,1])
# Remove a sample and define
i = c(1,2)
Xtest = lapply(Z$object, function(x){x@data[i,,]})
Ytest = Y[i]
Xtrain = lapply(Z$object, function(x){x@data[-i,,]})
Ytrain = Y[-i]
Ztrain = setupCMTFdata(Xtrain, Z$modes)
model = acmtfr_opt(Ztrain,Ytrain,2,initialization="random",pi=0, nstart=1, max_iter=10)
expect_no_error(npred(model, Xtest, Ztrain))
})
test_that("the function throws no errors for the tensor-matrix case", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateMatrix(A, D)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4))
Z = setupCMTFdata(datasets, modes)
Y = matrix(A[,1])
# Remove a sample and define
i = c(1,2)
Xtest = list()
for(p in 1:length(Z$object)){
if(length(dim(Z$object[[p]]))==3){
Xtest[[p]] = Z$object[[p]]@data[i,,]
} else{
Xtest[[p]] = Z$object[[p]]@data[i,]
}
}
Ytest = Y[i]
Xtrain = list()
for(p in 1:length(Z$object)){
if(length(dim(Z$object[[p]]))==3){
Xtrain[[p]] = Z$object[[p]]@data[-i,,]
} else{
Xtrain[[p]] = Z$object[[p]]@data[-i,]
}
}
Ytrain = Y[-i]
Ztrain = setupCMTFdata(Xtrain, Z$modes)
model = acmtfr_opt(Ztrain,Ytrain,2,initialization="random",pi=0, nstart=1, max_iter=10)
expect_no_error(npred(model, Xtest, Ztrain))
})
test_that("vectX must be the same size as vectZ", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(A[,1])
# Remove a sample and define
i = 1
Xtest = lapply(Z$object, function(x){x@data[i,1:3,]})
Ytest = Y[i]
Xtrain = lapply(Z$object, function(x){x@data[-i,,]})
Ytrain = Y[-i]
Ztrain = setupCMTFdata(Xtrain, Z$modes)
model = acmtfr_opt(Ztrain,Ytrain,2,initialization="random",pi=0, nstart=1, max_iter=10)
expect_error(npred(model, Xtest, Ztrain))
})
test_that("missing values in Xnew are ignored for the prediction", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(A[,1])
# Remove a sample and define
i = 1
Xtest = lapply(Z$object, function(x){x@data[i,,]})
Xtest[[1]][1:3,] = NA
Ytest = Y[i]
Xtrain = lapply(Z$object, function(x){x@data[-i,,]})
Ytrain = Y[-i]
Ztrain = setupCMTFdata(Xtrain, Z$modes)
model = acmtfr_opt(Ztrain,Ytrain,2,initialization="random",pi=0, nstart=1, max_iter=10)
expect_no_error(npred(model, Xtest, Ztrain))
})
test_that("yhat and npred of the input data are equal for ACMTF", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes)
Y = matrix(A[,1])
model = acmtfr_opt(Z,Y,1,initialization="random",pi=1, nstart=1)
Yhat = model$Yhat
Ypred = as.matrix(npred(model, lapply(Z$object, FUN=function(x){x@data}), Z))
expect_equal(Yhat, Ypred, tolerance=0.05)
})
test_that("yhat and npred of the input data are equal for ACMTF-R", {
set.seed(123)
I = 10
J = 5
K = 3
L = 8
M = 3
A = array(rnorm(I*2), c(I, 2))
B = array(rnorm(J*2), c(J, 2))
C = array(rnorm(K*2), c(K, 2))
D = array(rnorm(L*2), c(L, 2))
E = array(rnorm(M*2), c(M, 2))
df1 = reinflateTensor(A, B, C)
df2 = reinflateTensor(A, D, E)
datasets = list(df1, df2)
modes = list(c(1,2,3), c(1,4,5))
Z = setupCMTFdata(datasets, modes, normalize=FALSE)
Y = matrix(A[,1])
model = acmtfr_opt(Z,Y,1,initialization="random",pi=0.5, nstart=1)
Yhat = model$Yhat
Ypred = as.matrix(npred(model, lapply(Z$object, FUN=function(x){x@data}), Z))
expect_equal(Yhat, Ypred, tolerance=0.05)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.