compile_pseudo_pop: Compile pseudo population

View source: R/compile_pseudo_pop.R

compile_pseudo_popR Documentation

Compile pseudo population

Description

Compiles pseudo population based on the original population and estimated GPS value.

Usage

compile_pseudo_pop(
  data_obj,
  ci_appr,
  gps_density,
  exposure_col_name,
  nthread,
  ...
)

Arguments

data_obj

A S3 object including the following:

  • Original data set + GPS values

  • e_gps_pred

  • e_gps_std_pred

  • w_resid

  • gps_mx (min and max of gps)

  • w_mx (min and max of w).

ci_appr

Causal inference approach.

gps_density

Model type which is used for estimating GPS value, including normal and kernel.

exposure_col_name

Exposure data column name.

nthread

An integer value that represents the number of threads to be used by internal packages.

...

Additional parameters.

Details

For matching approach, use an extra parameter, bin_seq, which is sequence of w (treatment) to generate pseudo population. If NULL is passed the default value will be used, which is seq(min(w)+delta_n/2,max(w), by=delta_n).

Value

compile_pseudo_pop returns the pseudo population data that is compiled based on the selected causal inference approach.

Examples


set.seed(112)
m_d <- generate_syn_data(sample_size = 100)

m_xgboost <- function(nthread = 1,
                      ntrees = 35,
                      shrinkage = 0.3,
                      max_depth = 5,
                      ...) {SuperLearner::SL.xgboost(
                        nthread = nthread,
                        ntrees = ntrees,
                        shrinkage=shrinkage,
                        max_depth=max_depth,
                        ...)}

data_with_gps <- estimate_gps(.data = m_d,
                              .formula = w ~ cf1 + cf2 + cf3 +
                                             cf4 + cf5 + cf6,
                              gps_density = "normal",
                              sl_lib = c("m_xgboost")
                             )


pd <- compile_pseudo_pop(data_obj = data_with_gps,
                         ci_appr = "matching",
                         gps_density = "normal",
                         bin_seq = NULL,
                         exposure_col_name = c("w"),
                         nthread = 1,
                         dist_measure = "l1",
                         covar_bl_method = 'absolute',
                         covar_bl_trs = 0.1,
                         covar_bl_trs_type= "mean",
                         delta_n = 0.5,
                         scale = 1)


CausalGPS documentation built on June 22, 2024, 9:31 a.m.