Nothing
#' Writting the loglikelihood of the dirichlet
#'
#' This function calculates the loglikelihood of the dirichlet for the FBM model.
#'
#'
#' The regression of this model is defined by
#'
#'
#' \deqn{\mu_{it}=a_{i1}+a_{i2}\cdot\text{alr}(x_{i,(t-1)})+a_{i3}\cdot\text{Balance}(x_{i,(t-1)})\text{ for }i=1,\dots, D-1\text{ where } D \text{ is the number of bacteria}}
#'
#'
#'
#'@param especie Matrix that contains at row i the bacterial taxa of bacteria i at all time points.
#'@param param Vector with the parameters in the following order: a11,a12,a13, a21, a22,a23, ...a(D-1)1,a(D-1)2,a(D-1)3,tau. Where D is the number of bacterial species present in the matrix \code{especie}.
#'@param E Number of bacteria available
#'@param EspecieMaxima Row in which the bacterial with maximum mean abundance is in \code{especie}.This bacteria is used as reference in the alr transformation that the model does and it is placed at the denominator of the balance)
#'@param Tt Number of bacteria available
#'@param especiemodi Matrix that contains at row i the bacterial taxa of bacteria i at time points t=2,...,\code{Tt}. The bacteria are placed in the same order than in \code{especie}.
#'
#'
#'@return Returns a number with the value of the dirichlet loglikelihood.
#'
#' @examples
#'
#'
#'especie1=cbind(c(0.5,0.3,0.2), c(0.1,0.3,0.6))
#'especiemodi=especie1[,-1]
#'tau1=0.4
#'parms1= cbind(c(0.1,0.2),c(-0.2,0.1),c(0.3,0.2))
#'parms11=c(as.vector( t(parms1)),tau1)
#'
#'EstParmFunc_FBM(parms11,especie1,3 ,3 , 2,especiemodi)
#'
#' @references Creus-MartÃ, I., Moya, A., Santonja, F. J. (2021). A Dirichlet autoregressive model for the analysis of microbiota time-series data. Complexity, 2021, 1-16.
#' @export
#'
#'
# CoDaLoMic. Compositional Models to Longitudinal Microbiome Data.
# Copyright (C) 2024 Irene Creus MartÃ
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 3 as
# published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
EstParmFunc_FBM=function(param,especie,E,EspecieMaxima,Tt, especiemodi){ #This function writes the loglikelihood function
#param is a vector that contains all the parameters, the parameter tau is at the last position
H=length(param)
a=rep(0,H)
for (i in 1:H){
a[i]=param[i]
}
#Converting the vector of parameters into a matrix (E-1)x3
params=a[-H]
MatrizParametros=matrix(0,E-1,3)
MatrizParametros[1,]=params[1:3]
for (i in 1:(E-2)){
MatrizParametros[i+1,]=params[(1+3*i):(3+3*i)]
}
mu=B1MODImodel(MatrizParametros,especie,E,EspecieMaxima,Tt) #Applying the model
denominador<-rep(0,Tt)
ExpMu=exp(mu)
for (i in 1:Tt){
denominador[i]= 1+ sum(ExpMu[,i])
}
#Defining dirichlet parameters called alpha
alpha=matrix(0,E,Tt)
for(j in 1:E){
if (j==EspecieMaxima){
for(i in 1:Tt){
alpha[j,i]=a[H]/denominador[i]
}
}else{
for(i in 1:Tt){
alpha[j,i]=a[H]*ExpMu[j,i]/denominador[i]
}
}
}
#Writting loglikelihhod function
AlphaMenos1=alpha-1
LogEspecieModi=log(especiemodi)
MatrizSumas=t(AlphaMenos1)%*%LogEspecieModi
loglike<-rep(0,Tt-1)
for(i in 1:(Tt-1)){
loglike[i]=log(gamma(a[H]))-sum(log(gamma(alpha[,i])))+diag(MatrizSumas)[i]
}
loglikeVerdad=sum(loglike)
return(loglikeVerdad)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.