Nothing
alfappr.tune <- function(y, x, a = seq(-1, 1, by = 0.1), nterms = 1:10, ncores = 1,
folds = NULL, nfolds = 10, seed = NULL, graph = FALSE) {
if ( min(x) == 0 ) a <- a[a > 0]
if (ncores > 1) {
runtime <- proc.time()
cl <- parallel::makePSOCKcluster(ncores)
doParallel::registerDoParallel(cl)
folds <- Compositional::makefolds(y, nfolds = nfolds, stratified = FALSE, seed = seed )
nfolds <- length(folds)
ww <- foreach(k = 1:length(a), .combine = cbind, .export = c(".alfapprtune", "ppr",
"colmses", "colmeans"), .packages = "Rfast") %dopar% {
z <- Compositional::alfa(x, a[k])$aff
per <- as.numeric( .alfapprtune(y, z, nterms = nterms, folds = folds)$perf )
return(per)
}
parallel::stopCluster(cl)
per <- ww
runtime <- proc.time() - runtime
} else {
if ( is.null(folds) ) folds <- Compositional::makefolds(y, nfolds = nfolds, stratified = FALSE, seed = seed)
nfolds <- length(folds)
per <- matrix(nrow = length(a), ncol = 2)
runtime <- proc.time()
for ( k in 1:length(a) ) {
z <- Compositional::alfa(x, a[k])$aff
z <- as.data.frame(z)
per[k, ] <- as.numeric( .alfapprtune(y, z, nterms = nterms, folds = folds)$perf )
}
runtime <- proc.time() - runtime
}
if (graph) {
plot(a, per[, 2], type = "b", ylim = c( min(per[, 2]), max(per[, 2]) ), ylab = "Estimated performance",
xlab = expression( paste(alpha, " values") ), cex.lab = 1.2, cex.axis = 1.2, pch = 16, col = "green")
abline(v = a, col = "lightgrey", lty = 2)
abline(h = seq(min(per[ ,2]), max(per[, 2]), length = 10), col = "lightgrey", lty = 2)
}
rownames(per) <- paste("alpha=", a, sep = "")
colnames(per) <- c("nterms", "performance")
ind <- which.min(per[, 2])
list(per = per, performance = per[ind, 2], best_a = a[ind], runtime = runtime)
}
.alfapprtune <- function(y, x, nterms = c(2:3), folds = NULL) {
nfolds <- length(folds)
per <- matrix( nrow = nfolds, ncol = length(nterms) )
runtime <- proc.time()
for ( k in 1:nfolds ) {
ytrain <- y[ -folds[[ k ]] ]
ytest <- y[ folds[[ k ]] ]
xtrain <- x[-folds[[ k ]], ]
xtest <- x[folds[[ k ]], ]
colnames(xtest) <- colnames(xtrain)
st <- .alfappr(xtest, ytrain, xtrain, nterms)$est1
per[k, ] <- Rfast2::colmses(ytest, st)
} ## end for (k in 1:nfolds) {
runtime <- proc.time() - runtime
per <- cbind(nterms, Rfast::colmeans(per) )
colnames(per) <- c("nterms", "mse")
ind <- which.min(per[, 2])
list(per = per, perf = per[ind, ])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.