Nothing
alfasvm.tune <- function(y, x, a = seq(-1, 1, by = 0.1), cost = seq(0.2, 2, by = 0.2), gamma = NULL, ncores = 1,
folds = NULL, nfolds = 10, stratified = TRUE, seed = NULL, graph = FALSE) {
if ( min(x) == 0 ) a <- a[a > 0]
if (ncores > 1) {
runtime <- proc.time()
cl <- parallel::makePSOCKcluster(ncores)
doParallel::registerDoParallel(cl)
if ( is.factor(y) ) {
task <- "C"
if ( is.null(folds) ) folds <- Compositional::makefolds(y, nfolds = nfolds, stratified = stratified, seed = seed )
nfolds <- length(folds)
} else {
task <- "R"
if ( is.null(folds) ) folds <- Compositional::makefolds(y, nfolds = nfolds, stratified = FALSE, seed = seed )
nfolds <- length(folds)
}
ww <- foreach(k = 1:length(a), .combine = cbind, .export = c(".svmtune", "svm", "colaccs",
"colmses", "colmeans"), .packages = c("e1071", "Rfast", "Rfast2") ) %dopar% {
z <- Compositional::alfa(x, a[k])$aff
per <- as.numeric( .svmtune(y, z, task = task, cost = cost, gamma = gamma, folds = folds)$perf )
return(per)
}
parallel::stopCluster(cl)
per <- ww
runtime <- proc.time() - runtime
} else {
if ( is.factor(y) ) {
task <- "C"
if ( is.null(folds) ) folds <- Compositional::makefolds(y, nfolds = nfolds, stratified = stratified, seed = seed)
nfolds <- length(folds)
} else {
task <- "R"
if ( is.null(folds) ) folds <- Compositional::makefolds(y, nfolds = nfolds, stratified = FALSE, seed = seed)
nfolds <- length(folds)
}
per <- matrix(nrow = length(a), ncol = 3)
runtime <- proc.time()
for ( k in 1:length(a) ) {
z <- Compositional::alfa(x, a[k])$aff
per[k, ] <- as.numeric( .svmtune(y, z, task = task, cost = cost, gamma = gamma, folds = folds)$perf )
}
runtime <- proc.time() - runtime
}
if (graph) {
plot(a, per[, 3], type = "b", ylim = c( min(per[, 3]), max(per[, 3]) ), ylab = "Estimated performance",
xlab = expression( paste(alpha, " values") ), cex.lab = 1.2, cex.axis = 1.2, pch = 16, col = "green")
abline(v = a, col = "lightgrey", lty = 2)
abline(h = seq(min(per[ ,3]), max(per[, 3]), length = 10), col = "lightgrey", lty = 2)
}
rownames(per) <- paste("alpha=", a, sep = "")
colnames(per) <- c("gamma", "cost", "performance")
if (task == "C") {
ind <- which.max(per[, 3])
} else ind <- which.min(per[, 3])
list(per = per, performance = per[ind, 3], best_a = a[ind], runtime = runtime)
}
.svmtune <- function(y, x, task = "R", cost = seq(0.2, 2, by = 0.2), gamma = NULL,
folds = NULL) {
nfolds <- length(folds)
if ( is.null(gamma) ) {
gam <- 1/dim(x)[2]
gamma <- seq( gam^2, sqrt(gam), length = 10 )
}
config <- expand.grid(gamma, cost)
p <- dim(config)[1]
per <- matrix(nrow = nfolds, ncol = p)
if ( task == "R" ) {
runtime <- proc.time()
for ( k in 1:nfolds ) {
ytrain <- y[ -folds[[ k ]] ]
ytest <- y[ folds[[ k ]] ]
xtrain <- x[-folds[[ k ]], ]
xtest <- as.data.frame( x[folds[[ k ]], ] )
colnames(xtest) <- colnames(xtrain)
st <- matrix(nrow = length(ytest), ncol = p)
for ( j in 1:p ) {
mod <- e1071::svm(ytrain ~., data = as.data.frame(xtrain), type = "eps-regression",
gamma = config[j, 1], cost = config[j, 2], scale = FALSE)
st[, j] <- as.numeric( predict(mod, xtest) )
} ## end for ( j in 1:p ) {
per[k, ] <- Rfast2::colmses(ytest, st)
} ## end for (k in 1:nfolds) {
runtime <- proc.time() - runtime
per <- cbind(config, Rfast::colmeans(per) )
colnames(per) <- c("gamma", "cost", "mse")
ind <- which.min(per[, 3])
} else {
for ( k in 1:nfolds ) {
ytrain <- y[ -folds[[ k ]] ]
ytest <- y[ folds[[ k ]] ]
xtrain <- x[-folds[[ k ]], ]
xtest <- as.data.frame( x[folds[[ k ]], ] )
colnames(xtest) <- colnames(xtrain)
st <- matrix(nrow = length(ytest), ncol = p)
for ( j in 1:p ) {
mod <- e1071::svm(ytrain ~., data = as.data.frame(xtrain), type = "C-classification",
gamma = config[j, 1], cost = config[j, 2], scale = FALSE)
st[, j] <- as.numeric( predict(mod, xtest) )
} ## end for ( j in 1:p ) {
per[k, ] <- Rfast2::colaccs( as.numeric(ytest), st)
} ## end for (k in 1:nfolds) {
per <- cbind(config, Rfast::colmeans(per) )
colnames(per) <- c("gamma", "cost", "acc")
ind <- which.max(per[, 3])
}
list(per = per, perf = per[ind, ])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.