ConsRank: Compute the Median Ranking(s) According to the Kemeny's Axiomatic Approach

Compute the median ranking according to the Kemeny's axiomatic approach. Rankings can or cannot contain ties, rankings can be both complete or incomplete. The package contains both branch-and-bound algorithms and heuristic solutions recently proposed. The searching space of the solution can either be restricted to the universe of the permutations or unrestricted to all possible ties. The package also provide some useful utilities for deal with preference rankings, including both element-weight Kemeny distance and correlation coefficient. This release declare as deprecated some functions that are still in the package for compatibility. Next release will not contains these functions. Please type '?ConsRank-deprecated' Essential references: Emond, E.J., and Mason, D.W. (2002) <doi:10.1002/mcda.313>; D'Ambrosio, A., Amodio, S., and Iorio, C. (2015) <doi:10.1285/i20705948v8n2p198>; Amodio, S., D'Ambrosio, A., and Siciliano R. (2016) <doi:10.1016/j.ejor.2015.08.048>; D'Ambrosio, A., Mazzeo, G., Iorio, C., and Siciliano, R. (2017) <doi:10.1016/j.cor.2017.01.017>; Albano, A., and Plaia, A. (2021) <doi:10.1285/i20705948v14n1p117>.

Package details

AuthorAntonio D'Ambrosio [aut, cre], Sonia Amodio [ctb], Giulio Mazzeo [ctb], Alessandro Albano [ctb], Antonella Plaia [ctb]
MaintainerAntonio D'Ambrosio <>
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the ConsRank package in your browser

Any scripts or data that you put into this service are public.

ConsRank documentation built on March 31, 2023, 7:25 p.m.