# iwcombinpmatr: Item-weighted Combined input matrix of a data set In ConsRank: Compute the Median Ranking(s) According to the Kemeny's Axiomatic Approach

 iwcombinpmatr R Documentation

## Item-weighted Combined input matrix of a data set

### Description

Compute the item-weighted Combined input matrix of a data set as defined by Albano and Plaia (2021)

### Usage

``````iwcombinpmatr(X, w, Wk = NULL)
``````

### Arguments

 `X` A data matrix N by M, in which there are N judges and M objects to be judged. Each row is a ranking of the objects which are represented by the columns. Alternatively X can contain the rankings observed only once. In this case the argument Wk must be used `w` A M-dimensional row vector (individually weighted items), or a M by M matrix (item similarities) `Wk` Optional: the frequency of each ranking in the data

### Value

The M by M item-weighted combined input matrix

### Author(s)

Alessandro Albano alessandro.albano@unipa.it
Antonella Plaia antonella.plaia@unipa.it

### References

Emond, E. J., and Mason, D. W. (2002). A new rank correlation coefficient with application to the consensus ranking problem. Journal of Multi-Criteria Decision Analysis, 11(1), 17-28.
Albano, A. and Plaia, A. (2021). Element weighted Kemeny distance for ranking data. Electronic Journal of Applied Statistical Analysis, doi: 10.1285/i20705948v14n1p117

`tabulaterows` frequency distribution of a ranking data.

`combinpmatr` combined input matrix of a ranking data set.

### Examples

``````data(sports)
np <- dim(sports)[2]
P <- matrix(NA,nrow=np,ncol=np)
P[1,] <- c(0,5,5,10,10,10,10)
P[2,] <- c(5,0,5,10,10,10,10)
P[3,] <- c(5,5,0,10,10,10,10)
P[4,] <- c(10,10,10,0,5,5,5)
P[5,] <- c(10,10,10,5,0,5,5)
P[6,] <- c(10,10,10,5,5,0,5)
P[7,] <- c(10,10,10,5,5,5,0)
CIW <- iwcombinpmatr(sports,w=P)

``````

ConsRank documentation built on March 31, 2023, 7:25 p.m.