kemenyd | R Documentation |
Compute the Kemeny distance of a data matrix containing preference rankings, or compute the kemeny distance between two (matrices containing) rankings.
kemenyd(X, Y = NULL)
X |
A N by M data matrix, in which there are N judges and M objects to be judged. Each row is a ranking of the objects which are represented by the columns. If there is only X as input, the output is a square distance matrix |
Y |
A row vector, or a n by M data matrix in which there are n judges and the same M objects as X to be judged. |
If there is only X as input, d = square distance matrix. If there is also Y as input, d = matrix with N rows and n columns.
Antonio D'Ambrosio antdambr@unina.it
Kemeny, J. G., & Snell, L. J. (1962). Preference ranking: an axiomatic approach. Mathematical models in the social sciences, 9-23.
tau_x
TauX rank correlation coefficient
iw_kemenyd
item-weighted Kemeny distance
data(Idea)
RevIdea<-6-Idea ##as 5 means "most associated", it is necessary compute the reverse
#ranking of each rankings to have rank 1 = "most associated" and rank 5 = "least associated"
KD<-kemenyd(RevIdea)
KD2<-kemenyd(RevIdea[1:10,],RevIdea[55,])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.