ConsRank-package: Median Ranking Approach According to the Kemeny's Axiomatic...

Description Details Author(s) References Examples

Description

Compute the median ranking according to the Kemeny's axiomatic approach. Rankings can or cannot contain ties, rankings can be both complete or incomplete. The package contains both branch-and-bound and heuristic solutions as well as routines for computing the median constrained bucket order and the K-median cluster component analysis. The package also contains routines for visualize rankings and for detecting the universe of rankings including ties.

Details

Package: ConsRank
Type: Package
Version: 2.1.0
Date: 2017-04-28
License: GPL-3

Author(s)

Antonio D'Ambrosio [cre,aut] <antdambr@unina.it>, Sonia Amdio <sonia.amodio@unina.it> [ctb], Giulio Mazzeo [ctb] <giuliomazzeo@gmail.com>

Maintainer: Antonio D'Ambrosio <antdambr@unina.it>

References

Kemeny, J. G., & Snell, J. L. (1962). Mathematical models in the social sciences (Vol. 9). New York: Ginn.

Marden, J. I. (1996). Analyzing and modeling rank data. CRC Press.

Emond, E. J., & Mason, D. W. (2002). A new rank correlation coefficient with application to the consensus ranking problem. Journal of Multi-Criteria Decision Analysis, 11(1), 17-28.

D'Ambrosio, A. (2008). Tree based methods for data editing and preference rankings. Ph.D. thesis. http://www.fedoa.unina.it/id/eprint/2746

Heiser, W. J., & D'Ambrosio, A. (2013). Clustering and prediction of rankings within a Kemeny distance framework. In Algorithms from and for Nature and Life (pp. 19-31). Springer International Publishing.

Amodio, S., D'Ambrosio, A. & Siciliano, R (2016). Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach. European Journal of Operational Research, vol. 249(2).

D'Ambrosio, A., Amodio, S. & Iorio, C. (2015). Two algorithms for finding optimal solutions of the Kemeny rank aggregation problem for full rankings. Electronic Journal of Applied Statistical Analysis, vol. 8(2).

D'Ambrosio, A., Mazzeo, G., Iorio, C., & Siciliano, R. (2017). A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach. Computers & Operations Research, vol. 82.

D'Ambrosio, A., & Heiser, W.J. (2019). A Distribution-free Soft Clustering Method for Preference Rankings. Behaviormetrika , vol. 46(2), pp. 333–351.

D'Ambrosio, A., Iorio, C., Staiano, M., & Siciliano, R. (2019). Median constrained bucket order rank aggregation. Computational Statitstics, vol. 34(2), pp. 787–802,

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
## load APA data set, full version
data(APAFULL)
## Emond and Mason Branch-and-Bound algorithm.
#CR=consrank(APAFULL)
#use frequency tables
#TR=tabulaterows(APAFULL)
#quick algorithm
#CR2=consrank(TR$X,wk=TR$Wk,algorithm="quick")
#FAST algorithm
#CR3=consrank(TR$X,wk=TR$Wk,algorithm="fast",itermax=10)
#Decor algorithm
#CR4=consrank(TR$X,wk=TR$Wk,algorithm="decor",itermax=10)

#####################################
### load sports data set
#data(sports)
### FAST algorithm
#CR=consrank(sports,algorithm="fast",itermax=10)
#####################################

#######################################
### load Emond and Mason data set
#data(EMD)
### matrix X contains rankings
#X=EMD[,1:15]
### vector Wk contains frequencies
#Wk=EMD[,16]
### QUICK algorithm
#CR=consrank(X,wk=Wk,algorithm="quick")
#######################################

ConsRank documentation built on Sept. 28, 2021, 5:07 p.m.