ConsRank-package | R Documentation |
Compute the median ranking according to the Kemeny's axiomatic approach. Rankings can or cannot contain ties, rankings can be both complete or incomplete. The package contains both branch-and-bound and heuristic solutions as well as routines for computing the median constrained bucket order and the K-median cluster component analysis. The package also contains routines for visualize rankings and for detecting the universe of rankings including ties.
Package: | ConsRank |
Type: | Package |
Version: | 2.1.0 |
Date: | 2017-04-28 |
License: | GPL-3 |
Antonio D'Ambrosio [cre,aut] <antdambr@unina.it>, Sonia Amdio <sonia.amodio@unina.it> [ctb], Giulio Mazzeo [ctb] <giuliomazzeo@gmail.com>
Maintainer: Antonio D'Ambrosio <antdambr@unina.it>
Kemeny, J. G., & Snell, J. L. (1962). Mathematical models in the social sciences (Vol. 9). New York: Ginn.
Marden, J. I. (1996). Analyzing and modeling rank data. CRC Press.
Emond, E. J., & Mason, D. W. (2002). A new rank correlation coefficient with application to the consensus ranking problem. Journal of Multi-Criteria Decision Analysis, 11(1), 17-28.
D'Ambrosio, A. (2008). Tree based methods for data editing and preference rankings. Ph.D. thesis. http://www.fedoa.unina.it/id/eprint/2746
Heiser, W. J., & D'Ambrosio, A. (2013). Clustering and prediction of rankings within a Kemeny distance framework. In Algorithms from and for Nature and Life (pp. 19-31). Springer International Publishing.
Amodio, S., D'Ambrosio, A. & Siciliano, R (2016). Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach. European Journal of Operational Research, vol. 249(2).
D'Ambrosio, A., Amodio, S. & Iorio, C. (2015). Two algorithms for finding optimal solutions of the Kemeny rank aggregation problem for full rankings. Electronic Journal of Applied Statistical Analysis, vol. 8(2).
D'Ambrosio, A., Mazzeo, G., Iorio, C., & Siciliano, R. (2017). A differential evolution algorithm for finding the median ranking under the Kemeny axiomatic approach. Computers & Operations Research, vol. 82.
D'Ambrosio, A., & Heiser, W.J. (2019). A Distribution-free Soft Clustering Method for Preference Rankings. Behaviormetrika , vol. 46(2), pp. 333–351.
D'Ambrosio, A., Iorio, C., Staiano, M., & Siciliano, R. (2019). Median constrained bucket order rank aggregation. Computational Statitstics, vol. 34(2), pp. 787–802,
## load APA data set, full version
data(APAFULL)
## Emond and Mason Branch-and-Bound algorithm.
#CR=consrank(APAFULL)
#use frequency tables
#TR=tabulaterows(APAFULL)
#quick algorithm
#CR2=consrank(TR$X,wk=TR$Wk,algorithm="quick")
#FAST algorithm
#CR3=consrank(TR$X,wk=TR$Wk,algorithm="fast",itermax=10)
#Decor algorithm
#CR4=consrank(TR$X,wk=TR$Wk,algorithm="decor",itermax=10)
#####################################
### load sports data set
#data(sports)
### FAST algorithm
#CR=consrank(sports,algorithm="fast",itermax=10)
#####################################
#######################################
### load Emond and Mason data set
#data(EMD)
### matrix X contains rankings
#X=EMD[,1:15]
### vector Wk contains frequencies
#Wk=EMD[,16]
### QUICK algorithm
#CR=consrank(X,wk=Wk,algorithm="quick")
#######################################
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.