dds: DDS algorithm to calibrate the model

Description Usage Arguments Details Value Author(s) References Examples

View source: R/dds.R

Description

This function allows the user to calibrate the DWB or other models with the Dynamical Dimension Search (DDS) algorithm (Tolson & Shoemaker, 2007). As the calibration is performed based on a single value, one should average or create a scalar to evaluate the model's performance. The evaluation can be made using all the streamflow stations, or other variables, between the observed and the simulated values.

Usage

1
dds(xBounds.df, numIter, iniPar = NA, r = 0.2, OBJFUN, ...)

Arguments

xBounds.df

must be a dataframe which defines the parameter range for searching, with 1st column as the minimum and 2nd column as the maximum of the parameter space.

numIter

is an integer that defines the total number of simulations so as to calibrate the model.

iniPar

is a vector which contains an optional initial parameter set.

r

is a double between 0 and 1 which defines the range of searching in the DDS algorithm, the default value is 0.2.

OBJFUN

is a function which returns a scalar value which one is trying to minimize. In this case, the scalar is the Objective Function used to evaluate the model performance.

...

other variables and datasets needed to run the model.

Details

dds

Value

outputs.df is a four entry list, containing X_BEST, Y_BEST, X_TEST and Y_TEST, as they evolve over numIter iterations. X_BEST and Y_BEST are the parameters found by the algorithm, parameters which produce a good value of the Objective Function Y_BEST. X_TEST and Y_TEST are the evaluated parameters and their respective performance value.

Author(s)

Nicolas Duque Gardeazabal <nduqueg@unal.edu.co>
Pedro Felipe Arboleda Obando <pfarboledao@unal.edu.co>
Carolina Vega Viviescas <cvegav@unal.edu.co>
David Zamora <dazamoraa@unal.edu.co>

Water Resources Engineering Research Group - GIREH Universidad Nacional de Colombia - sede Bogota

References

Tolson, B. A., & Shoemaker, C. A. (2007). "Dynamically dimensioned search algorithm for computationally efficient watershed model calibration". Water Resources Research, 43(1), 1-16.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Load P and PET databases
data(P_sogamoso, PET_sogamoso)

# Verify that the coordinates of the databases match
Coord_comparison(P_sogamoso, PET_sogamoso)

# Load geographic info of GRU and basins where calibration will be performed
data(GRU,basins)
cellBasins <- cellBasins(GRU, basins)

# Establish the initial modeling conditions
GRU.maps <- buildGRUmaps(GRU, param)
init <- init_state(GRU.maps$smaxR)
g_v <- init$In_ground
s_v <- init$In_storage
rm(init)

# Load general characteristics of modeling
setup_data <- readSetup(Read = TRUE)
Dates <- seq(as.Date( gsub('[^0-9.]','',colnames(P_sogamoso)[3]), 
format = "%Y.%m.%d"), 
             as.Date(gsub('[^0-9.]','',tail(colnames(P_sogamoso),1)) , 
             format = "%Y.%m.%d"), by = "month")

# For this calibration exercise, the last date of simulation is 
# the same as the final date of calibration
Start.sim <- which(Dates == setup_data[8,1])
End.sim <- which(Dates == setup_data[10,1])
# the first two columns of the P and PET are the coordinates of the cells
Sim.Period <- c(Start.sim:End.sim)+2 
Start.cal <- which(Dates == setup_data[9,1])
End.cal <- which(Dates == as.Date("2004-12-01"))
# the first two columns of the P and PET are the coordinates of the cells
Cal.Period <- c(Start.cal:End.cal)+2  

#Load observed runoff
data(EscSogObs)

# Function that runs the DWB model
NSE_Sogamoso_DWB <- function(parameters, P, PET, g_v,s_v, Sim.Period, EscObs, Cal.Period){

parameters <- as.vector(parameters)
# Transform the parameters to the format that the model needs
param <- matrix(parameters, nrow = raster::cellStats(GRU,stat="max"))  

# Construction of parameter maps from values by GRU
GRU.maps <- buildGRUmaps(GRU, param)
alpha1_v <- GRU.maps$alpha1
alpha2_v <- GRU.maps$alpha2
smax_v <- GRU.maps$smax
d_v <- GRU.maps$d
DWB.sogamoso <- DWBCalculator(P_sogamoso[ ,Sim.Period], PET_sogamoso[ ,Sim.Period],
                              g_v,s_v, alpha1_v, alpha2_v, smax_v,d_v, calibration = TRUE)
Esc.Sogamoso <- varBasins(DWB.sogamoso$q_total, cellBasins$cellBasins)

# model evaluation; in case of possible NA results in the simulation, 
# add a conditional assingment to a very high value
sim <- Esc.Sogamoso$varAverage[Cal.Period - 2, ]
obs <- EscSogObs[Cal.Period - 2, ]

if (sum(!is.na(sim)) == prod(dim(sim))){
  numer <- apply((sim - obs)^2, 2, sum, na.rm = TRUE)
  demom <- apply((obs - apply(obs, 2, mean, na.rm = TRUE))^2, 2, sum, na.rm = TRUE)
  nse.cof <- 1 - numer / demom
} else {
  nse.cof <- NA
}

Perf <- (-1)*nse.cof
if(!is.na(mean(Perf))){ 
  Mean.Perf <- mean(Perf)
  } else {Mean.Perf <- 1e100}
     return(Mean.Perf)
}

# coupling with the DDS algorithm
xBounds.df <- data.frame(lower = rep(0, times = 40), upper = rep(c(1, 2000), times = c(30, 10)))
result <- dds(xBounds.df=xBounds.df, numIter=2, OBJFUN=NSE_Sogamoso_DWB,
              P=P_sogamoso, PET=PET_sogamoso, g_v=g_v, s_v=s_v, Sim.Period=Sim.Period, 
              EscObs=EscSogObs, Cal.Period=Cal.Period)

DWBmodelUN documentation built on Aug. 18, 2020, 9:06 a.m.