Nothing
test_that("the dice similarity algorithm is functional", {
# Create a random graph
graph <-
create_graph() %>%
add_gnm_graph(
n = 10,
m = 22,
set_seed = 23)
# Get the Dice similarity values for
# nodes `5`, `6`, and `7`; all directions
dice_all <-
get_dice_similarity(
graph = graph,
nodes = 5:7,
direction = "all")
# Get the Dice similarity values for
# nodes `5`, `6`, and `7`; `out` direction
dice_out <-
get_dice_similarity(
graph = graph,
nodes = 5:7,
direction = "out")
# Get the Dice similarity values for
# nodes `5`, `6`, and `7`; `in` direction
dice_in <-
get_dice_similarity(
graph = graph,
nodes = 5:7,
direction = "in")
# Expect that a `matrix` object is returned
expect_true(is.matrix(dice_all))
expect_true(is.matrix(dice_out))
expect_true(is.matrix(dice_in))
# Expect a square matrix of 3 columns and 3 rows
expect_equal(dim(dice_all), c(3, 3))
expect_equal(dim(dice_out), c(3, 3))
expect_equal(dim(dice_in), c(3, 3))
# Expect all columns to be numeric
expect_type(dice_all[, 1], "double")
expect_type(dice_all[, 2], "double")
expect_type(dice_all[, 3], "double")
expect_type(dice_out[, 1], "double")
expect_type(dice_out[, 2], "double")
expect_type(dice_out[, 3], "double")
expect_type(dice_in[, 1], "double")
expect_type(dice_in[, 2], "double")
expect_type(dice_in[, 3], "double")
# Expect specific column names in this data frame
expect_equal(
colnames(dice_all), c("5", "6", "7"))
expect_equal(
colnames(dice_out), c("5", "6", "7"))
expect_equal(
colnames(dice_in), c("5", "6", "7"))
# Expect specific row names in this data frame
expect_equal(
rownames(dice_all), c("5", "6", "7"))
expect_equal(
rownames(dice_out), c("5", "6", "7"))
expect_equal(
rownames(dice_in), c("5", "6", "7"))
# Expect all values in the matrix to be less than
# or equal to 1.0
expect_true(
all(as.numeric(dice_all) <= 1.0))
expect_true(
all(as.numeric(dice_out) <= 1.0))
expect_true(
all(as.numeric(dice_in) <= 1.0))
# Get the Dice similarity values for all nodes,
# all directions
dice_all_all <-
get_dice_similarity(
graph = graph,
direction = "all")
# Expect the same number of matrix columns
# and rows as there are nodes
expect_equal(
ncol(dice_all_all), count_nodes(graph = graph))
expect_equal(
nrow(dice_all_all), count_nodes(graph = graph))
# Expect an error if one or more node IDs
# provided are not in the graph
expect_snapshot(error = TRUE,
get_dice_similarity(
graph = graph,
nodes = 8:12,
direction = "all"))
})
test_that("the Jaccard similarity algorithm is functional", {
# Create a random graph
graph <-
create_graph() %>%
add_gnm_graph(
n = 10,
m = 22,
set_seed = 23)
# Expect an error when using a value
# for `direction` that is not one of
# three accepted values
expect_snapshot(error = TRUE,
get_jaccard_similarity(
graph = graph,
nodes = 5:7,
direction = "away"))
# Get the Jaccard similarity values for
# nodes `5`, `6`, and `7`; all directions
jaccard_all <-
get_jaccard_similarity(
graph = graph,
nodes = 5:7,
direction = "all")
# Get the Jaccard similarity values for
# nodes `5`, `6`, and `7`; `out` direction
jaccard_out <-
get_jaccard_similarity(
graph = graph,
nodes = 5:7,
direction = "out")
# Get the Jaccard similarity values for
# nodes `5`, `6`, and `7`; `in` direction
jaccard_in <-
get_jaccard_similarity(
graph = graph,
nodes = 5:7,
direction = "in")
# Expect that a `matrix` object is returned
expect_true(is.matrix(jaccard_all))
expect_true(is.matrix(jaccard_out))
expect_true(is.matrix(jaccard_in))
# Expect a square matrix of 3 columns and 3 rows
expect_equal(dim(jaccard_all), c(3, 3))
expect_equal(dim(jaccard_out), c(3, 3))
expect_equal(dim(jaccard_in), c(3, 3))
# Expect all columns to be numeric
expect_type(jaccard_all[, 1], "double")
expect_type(jaccard_all[, 2], "double")
expect_type(jaccard_all[, 3], "double")
expect_type(jaccard_out[, 1], "double")
expect_type(jaccard_out[, 2], "double")
expect_type(jaccard_out[, 3], "double")
expect_type(jaccard_in[, 1], "double")
expect_type(jaccard_in[, 2], "double")
expect_type(jaccard_in[, 3], "double")
# Expect specific column names in this matrix
# Expect specific row names in this matrix
m_names <- list(
c("5", "6", "7"),
c("5", "6", "7")
)
expect_equal(dimnames(jaccard_all), m_names)
expect_equal(dimnames(jaccard_out), m_names)
expect_equal(dimnames(jaccard_in), m_names)
# Expect all values in the matrix to be less than
# or equal to 1.0
expect_true(
all(as.numeric(jaccard_all) <= 1.0))
expect_true(
all(as.numeric(jaccard_out) <= 1.0))
expect_true(
all(as.numeric(jaccard_in) <= 1.0))
# Get the Jaccard similarity values for all nodes,
# all directions
jaccard_all_all <-
get_jaccard_similarity(
graph = graph,
direction = "all")
# Expect the same number of matrix columns
# and rows as there are nodes
expect_equal(
ncol(jaccard_all_all), count_nodes(graph = graph))
expect_equal(
nrow(jaccard_all_all), count_nodes(graph = graph))
# Expect an error if one or more node IDs
# provided are not in the graph
expect_error(
get_jaccard_similarity(
graph = graph,
nodes = 8:12,
direction = "all"))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.