Euler angles from a rotation matrix on SO(3) | R Documentation |
It calculates three euler angles (\theta_{12}, \theta_{13}, \theta_{23})
from a (3 \times 3)
rotation matrix X, where X is defined as X = R_z(\theta_{12})\times R_y(\theta_{13}) \times R_x(\theta_{23})
. Here R_x(\theta_{23})
means a rotation of \theta_{23}
radians about the x axis.
rot2eul(X)
X |
A rotation matrix which is defined as a product of three elementary rotations mentioned above.
Here |
Given a rotation matrix X, euler angles are computed by equating each element in X with the corresponding element in the matrix product defined above. This results in nine equations that can be used to find the euler angles.
For a given rotation matrix, there are two eqivalent sets of euler angles.
Anamul Sajib <sajibstat@du.ac.bd>.
R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd>.
Green, P. J. and Mardia, K. V. (2006). Bayesian alignment using hierarchical models, with applications in proteins bioinformatics. Biometrika, 93(2):235–254.
http://www.staff.city.ac.uk/~sbbh653/publications/euler.pdf
eul2rot
# three euler angles
theta.12 <- sample( seq(-3, 3, 0.3), 1 )
theta.23 <- sample( seq(-3, 3, 0.3), 1 )
theta.13 <- sample( seq(-1.4, 1.4, 0.3), 1 )
theta.12 ; theta.23 ; theta.13
X <- eul2rot(theta.12, theta.23, theta.13)
X ## A rotation matrix
e <- rot2eul(X)$v1
theta.12 <- e[3]
theta.23 <- e[2]
theta.13 <- e[1]
theta.12 ; theta.23 ; theta.13
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.