Converting a rotation matrix on SO(3) to an unsigned unit quaternion | R Documentation |

It returns an unsigned unite quaternion in `S^3`

(the four-dimensional sphere) from a `3 \times 3`

rotation matrix on SO(3).

```
rot2quat(X)
```

`X` |
A rotation matrix in SO(3). |

Firstly construct a system of linear equations by equating the corresponding components of the theoretical rotation matrix proposed by Prentice (1986), and given a rotation matrix. Finally, the system of linear equations are solved by following the tricks mentioned in second reference here in order to achieve numerical accuracy to get quaternion values.

A unsigned unite quaternion.

Anamul Sajib.

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd>.

Prentice,M. J. (1986). Orientation statistics without parametric assumptions.Journal of the Royal Statistical Society. Series B: Methodological 48(2). //http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm

```
quat2rot, rotation, Arotation \ link{rot.matrix}
```

```
x <- rnorm(4)
x <- x/sqrt( sum(x^2) ) ## an unit quaternion in R4 ##
R <- quat2rot(x)
R
x
rot2quat(R) ## sign is not exact as you can see
```

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.